Loading…

Extract the Degradation Information in Squeezed States with Machine Learning

In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and p...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2022-02, Vol.128 (7), p.073604-073604, Article 073604
Main Authors: Hsieh, Hsien-Yi, Chen, Yi-Ru, Wu, Hsun-Chung, Chen, Hua Li, Ning, Jingyu, Huang, Yao-Chin, Wu, Chien-Ming, Lee, Ray-Kuang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033
cites cdi_FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033
container_end_page 073604
container_issue 7
container_start_page 073604
container_title Physical review letters
container_volume 128
creator Hsieh, Hsien-Yi
Chen, Yi-Ru
Wu, Hsun-Chung
Chen, Hua Li
Ning, Jingyu
Huang, Yao-Chin
Wu, Chien-Ming
Lee, Ray-Kuang
description In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one second. Moreover, the resulting fidelity remains as high as 0.99 even when the antisqueezing level is higher than 20 dB. Compared with the phase noise and loss mechanisms coupled from the environment and surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for low and high noisy scenarios, i.e., with the antisqueezing levels at 12 dB and 18 dB, respectively. Our neural network enhanced quantum state tomography provides the metrics to give physical descriptions of every feature observed in the quantum state with a single scan measurement just by varying the local oscillator phase from 0 to 2π and paves a way of exploring large-scale quantum systems in real time.
doi_str_mv 10.1103/PhysRevLett.128.073604
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636148384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636148384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EoqXwCpWPXFJ2Y9dJjqj8VQoCUThHrrNpgpqk2C5Qnp6gFMRp9zAzu_MxNkaYIIK4eCx37oneU_J-gmE8gUgokAdsiBAlQYQoD9kQQGCQAEQDduLcKwBgqOJjNhDTUEoZwpCl15_eauO5L4lf0crqXPuqbfi8KVpb93vV8MXbluiLcr7w2pPjH5Uv-b02ZdUQT0nbpmpWp-yo0GtHZ_s5Yi8318-zuyB9uJ3PLtPACEQfxGpJOoEIQtKhDKeFQamMKERXDFFJYTQCGlJohI61hDhaCqV0rpJp10GIETvvcze27f5yPqsrZ2i91g21W5eFSiiUsYhlJ1W91NjWOUtFtrFVre0uQ8h-SGb_SGYdyawn2RnH-xvbZU35n-0XnfgGG8ZxEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636148384</pqid></control><display><type>article</type><title>Extract the Degradation Information in Squeezed States with Machine Learning</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Hsieh, Hsien-Yi ; Chen, Yi-Ru ; Wu, Hsun-Chung ; Chen, Hua Li ; Ning, Jingyu ; Huang, Yao-Chin ; Wu, Chien-Ming ; Lee, Ray-Kuang</creator><creatorcontrib>Hsieh, Hsien-Yi ; Chen, Yi-Ru ; Wu, Hsun-Chung ; Chen, Hua Li ; Ning, Jingyu ; Huang, Yao-Chin ; Wu, Chien-Ming ; Lee, Ray-Kuang</creatorcontrib><description>In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one second. Moreover, the resulting fidelity remains as high as 0.99 even when the antisqueezing level is higher than 20 dB. Compared with the phase noise and loss mechanisms coupled from the environment and surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for low and high noisy scenarios, i.e., with the antisqueezing levels at 12 dB and 18 dB, respectively. Our neural network enhanced quantum state tomography provides the metrics to give physical descriptions of every feature observed in the quantum state with a single scan measurement just by varying the local oscillator phase from 0 to 2π and paves a way of exploring large-scale quantum systems in real time.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.128.073604</identifier><identifier>PMID: 35244420</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2022-02, Vol.128 (7), p.073604-073604, Article 073604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033</citedby><cites>FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033</cites><orcidid>0000-0001-5227-8248 ; 0000-0003-3191-8845 ; 0000-0001-8580-9025 ; 0000-0002-7171-7274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35244420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Hsien-Yi</creatorcontrib><creatorcontrib>Chen, Yi-Ru</creatorcontrib><creatorcontrib>Wu, Hsun-Chung</creatorcontrib><creatorcontrib>Chen, Hua Li</creatorcontrib><creatorcontrib>Ning, Jingyu</creatorcontrib><creatorcontrib>Huang, Yao-Chin</creatorcontrib><creatorcontrib>Wu, Chien-Ming</creatorcontrib><creatorcontrib>Lee, Ray-Kuang</creatorcontrib><title>Extract the Degradation Information in Squeezed States with Machine Learning</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one second. Moreover, the resulting fidelity remains as high as 0.99 even when the antisqueezing level is higher than 20 dB. Compared with the phase noise and loss mechanisms coupled from the environment and surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for low and high noisy scenarios, i.e., with the antisqueezing levels at 12 dB and 18 dB, respectively. Our neural network enhanced quantum state tomography provides the metrics to give physical descriptions of every feature observed in the quantum state with a single scan measurement just by varying the local oscillator phase from 0 to 2π and paves a way of exploring large-scale quantum systems in real time.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EoqXwCpWPXFJ2Y9dJjqj8VQoCUThHrrNpgpqk2C5Qnp6gFMRp9zAzu_MxNkaYIIK4eCx37oneU_J-gmE8gUgokAdsiBAlQYQoD9kQQGCQAEQDduLcKwBgqOJjNhDTUEoZwpCl15_eauO5L4lf0crqXPuqbfi8KVpb93vV8MXbluiLcr7w2pPjH5Uv-b02ZdUQT0nbpmpWp-yo0GtHZ_s5Yi8318-zuyB9uJ3PLtPACEQfxGpJOoEIQtKhDKeFQamMKERXDFFJYTQCGlJohI61hDhaCqV0rpJp10GIETvvcze27f5yPqsrZ2i91g21W5eFSiiUsYhlJ1W91NjWOUtFtrFVre0uQ8h-SGb_SGYdyawn2RnH-xvbZU35n-0XnfgGG8ZxEg</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Hsieh, Hsien-Yi</creator><creator>Chen, Yi-Ru</creator><creator>Wu, Hsun-Chung</creator><creator>Chen, Hua Li</creator><creator>Ning, Jingyu</creator><creator>Huang, Yao-Chin</creator><creator>Wu, Chien-Ming</creator><creator>Lee, Ray-Kuang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5227-8248</orcidid><orcidid>https://orcid.org/0000-0003-3191-8845</orcidid><orcidid>https://orcid.org/0000-0001-8580-9025</orcidid><orcidid>https://orcid.org/0000-0002-7171-7274</orcidid></search><sort><creationdate>20220218</creationdate><title>Extract the Degradation Information in Squeezed States with Machine Learning</title><author>Hsieh, Hsien-Yi ; Chen, Yi-Ru ; Wu, Hsun-Chung ; Chen, Hua Li ; Ning, Jingyu ; Huang, Yao-Chin ; Wu, Chien-Ming ; Lee, Ray-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Hsien-Yi</creatorcontrib><creatorcontrib>Chen, Yi-Ru</creatorcontrib><creatorcontrib>Wu, Hsun-Chung</creatorcontrib><creatorcontrib>Chen, Hua Li</creatorcontrib><creatorcontrib>Ning, Jingyu</creatorcontrib><creatorcontrib>Huang, Yao-Chin</creatorcontrib><creatorcontrib>Wu, Chien-Ming</creatorcontrib><creatorcontrib>Lee, Ray-Kuang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Hsien-Yi</au><au>Chen, Yi-Ru</au><au>Wu, Hsun-Chung</au><au>Chen, Hua Li</au><au>Ning, Jingyu</au><au>Huang, Yao-Chin</au><au>Wu, Chien-Ming</au><au>Lee, Ray-Kuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extract the Degradation Information in Squeezed States with Machine Learning</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2022-02-18</date><risdate>2022</risdate><volume>128</volume><issue>7</issue><spage>073604</spage><epage>073604</epage><pages>073604-073604</pages><artnum>073604</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one second. Moreover, the resulting fidelity remains as high as 0.99 even when the antisqueezing level is higher than 20 dB. Compared with the phase noise and loss mechanisms coupled from the environment and surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for low and high noisy scenarios, i.e., with the antisqueezing levels at 12 dB and 18 dB, respectively. Our neural network enhanced quantum state tomography provides the metrics to give physical descriptions of every feature observed in the quantum state with a single scan measurement just by varying the local oscillator phase from 0 to 2π and paves a way of exploring large-scale quantum systems in real time.</abstract><cop>United States</cop><pmid>35244420</pmid><doi>10.1103/PhysRevLett.128.073604</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5227-8248</orcidid><orcidid>https://orcid.org/0000-0003-3191-8845</orcidid><orcidid>https://orcid.org/0000-0001-8580-9025</orcidid><orcidid>https://orcid.org/0000-0002-7171-7274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2022-02, Vol.128 (7), p.073604-073604, Article 073604
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2636148384
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Extract the Degradation Information in Squeezed States with Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extract%20the%20Degradation%20Information%20in%20Squeezed%20States%20with%20Machine%20Learning&rft.jtitle=Physical%20review%20letters&rft.au=Hsieh,%20Hsien-Yi&rft.date=2022-02-18&rft.volume=128&rft.issue=7&rft.spage=073604&rft.epage=073604&rft.pages=073604-073604&rft.artnum=073604&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.128.073604&rft_dat=%3Cproquest_cross%3E2636148384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-86bea90702ea2425fc146c3f310311643ca101ce61c3a8a4087b366ad69500033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636148384&rft_id=info:pmid/35244420&rfr_iscdi=true