Loading…

The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface

The adsorption and thermal reaction of formaldehyde and formic acid on the clean and modified Fe(100) surface is studied. CH 2O adsorbs molecularly on the clean Fe(100) surface without the formation of polymer (CH 2O) x (paraformaldehyde) at exposures below 3.0 L. At 223 K, molecularly adsorbed CH 2...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 1996-02, Vol.346 (1), p.165-188
Main Authors: Hung, Wei-Hsiu, Bernasek, Steven L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63
cites cdi_FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63
container_end_page 188
container_issue 1
container_start_page 165
container_title Surface science
container_volume 346
creator Hung, Wei-Hsiu
Bernasek, Steven L
description The adsorption and thermal reaction of formaldehyde and formic acid on the clean and modified Fe(100) surface is studied. CH 2O adsorbs molecularly on the clean Fe(100) surface without the formation of polymer (CH 2O) x (paraformaldehyde) at exposures below 3.0 L. At 223 K, molecularly adsorbed CH 2O is hydrogenated to form methoxy and dehydrogenated to form surface CO. Coadsorption of H 2O and hydroxy species can oxidize this methoxy species to form formate. Methanol is observed as one of the desorption products for the coadsorption of H 2O or OH and CH 2O. The presence of adatomic C induces the formation of (CH 2O) x polymers on the surface and changes the mechanism of CH 2O decomposition. The presence of adatomic O decreases CH 2O decomposition and increases molecular CH 2O desorption. Oxygen alters the reactivity of the surface but not the reaction pathway for CH 2O decomposition. At low exposures, formic acid adsorbs to produce a bidentate formate species on the Fe(100) surface at 100 K. A monodentate formate is observed at high coverage, which converts into a bidentate formate with higher symmetry at 253 K. This surface formale further decomposes to either desorb CO or form O (ad) and C (ad). On the c(2×2)-O and p(1×2)-OH surfaces, formic acid transfers carboxylic hydrogen to preadsorbed oxygen or hydroxyl to desorb H 2O during the thermal decomposition reaction.
doi_str_mv 10.1016/0039-6028(95)00905-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26362453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0039602895009051</els_id><sourcerecordid>26362453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVoIds0b5CDDqXsHpyOJFuWL4USukkg0EtyFspoRJTa1lbyFvL2tXeXHKuLxPD936CfsSsB1wKE_gagukqDNOuu2QB00FTijK2EabtKto35wFbvyDn7VMorzKfumhX7_fhC3PmS8m6KaeRu9NwTpmGXSjxMUuAh5cH1nl7ePB2IZRCRO4yez8g0O7And4wPyccQyfMt8bUA2PCyz8EhfWYfg-sLXZ7uC_a0_fl4c1c9_Lq9v_nxUKHS9VRJhYaEEw0o78j4YLRZHkZ2z1QrqVpohYPnGlsUsgURWtIYfAheaPBaXbCvR-8upz97KpMdYkHqezdS2hcrtdKybtQM1kcQcyolU7C7HAeX36wAuzRrl9rsUpvtGnto1oo59uXkdwVdH7IbMZb3rOzM7F_s348YzX_9GynbgpFGJB8z4WR9iv_f8w9fNowR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26362453</pqid></control><display><type>article</type><title>The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface</title><source>Elsevier</source><creator>Hung, Wei-Hsiu ; Bernasek, Steven L</creator><creatorcontrib>Hung, Wei-Hsiu ; Bernasek, Steven L</creatorcontrib><description>The adsorption and thermal reaction of formaldehyde and formic acid on the clean and modified Fe(100) surface is studied. CH 2O adsorbs molecularly on the clean Fe(100) surface without the formation of polymer (CH 2O) x (paraformaldehyde) at exposures below 3.0 L. At 223 K, molecularly adsorbed CH 2O is hydrogenated to form methoxy and dehydrogenated to form surface CO. Coadsorption of H 2O and hydroxy species can oxidize this methoxy species to form formate. Methanol is observed as one of the desorption products for the coadsorption of H 2O or OH and CH 2O. The presence of adatomic C induces the formation of (CH 2O) x polymers on the surface and changes the mechanism of CH 2O decomposition. The presence of adatomic O decreases CH 2O decomposition and increases molecular CH 2O desorption. Oxygen alters the reactivity of the surface but not the reaction pathway for CH 2O decomposition. At low exposures, formic acid adsorbs to produce a bidentate formate species on the Fe(100) surface at 100 K. A monodentate formate is observed at high coverage, which converts into a bidentate formate with higher symmetry at 253 K. This surface formale further decomposes to either desorb CO or form O (ad) and C (ad). On the c(2×2)-O and p(1×2)-OH surfaces, formic acid transfers carboxylic hydrogen to preadsorbed oxygen or hydroxyl to desorb H 2O during the thermal decomposition reaction.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/0039-6028(95)00905-1</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adsorption ; Chemistry ; Decomposition ; Exact sciences and technology ; Formaldehyde ; Formic acid ; General and physical chemistry ; Solid-gas interface ; Surface physical chemistry</subject><ispartof>Surface science, 1996-02, Vol.346 (1), p.165-188</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63</citedby><cites>FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2983623$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Wei-Hsiu</creatorcontrib><creatorcontrib>Bernasek, Steven L</creatorcontrib><title>The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface</title><title>Surface science</title><description>The adsorption and thermal reaction of formaldehyde and formic acid on the clean and modified Fe(100) surface is studied. CH 2O adsorbs molecularly on the clean Fe(100) surface without the formation of polymer (CH 2O) x (paraformaldehyde) at exposures below 3.0 L. At 223 K, molecularly adsorbed CH 2O is hydrogenated to form methoxy and dehydrogenated to form surface CO. Coadsorption of H 2O and hydroxy species can oxidize this methoxy species to form formate. Methanol is observed as one of the desorption products for the coadsorption of H 2O or OH and CH 2O. The presence of adatomic C induces the formation of (CH 2O) x polymers on the surface and changes the mechanism of CH 2O decomposition. The presence of adatomic O decreases CH 2O decomposition and increases molecular CH 2O desorption. Oxygen alters the reactivity of the surface but not the reaction pathway for CH 2O decomposition. At low exposures, formic acid adsorbs to produce a bidentate formate species on the Fe(100) surface at 100 K. A monodentate formate is observed at high coverage, which converts into a bidentate formate with higher symmetry at 253 K. This surface formale further decomposes to either desorb CO or form O (ad) and C (ad). On the c(2×2)-O and p(1×2)-OH surfaces, formic acid transfers carboxylic hydrogen to preadsorbed oxygen or hydroxyl to desorb H 2O during the thermal decomposition reaction.</description><subject>Adsorption</subject><subject>Chemistry</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Formaldehyde</subject><subject>Formic acid</subject><subject>General and physical chemistry</subject><subject>Solid-gas interface</subject><subject>Surface physical chemistry</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVoIds0b5CDDqXsHpyOJFuWL4USukkg0EtyFspoRJTa1lbyFvL2tXeXHKuLxPD936CfsSsB1wKE_gagukqDNOuu2QB00FTijK2EabtKto35wFbvyDn7VMorzKfumhX7_fhC3PmS8m6KaeRu9NwTpmGXSjxMUuAh5cH1nl7ePB2IZRCRO4yez8g0O7And4wPyccQyfMt8bUA2PCyz8EhfWYfg-sLXZ7uC_a0_fl4c1c9_Lq9v_nxUKHS9VRJhYaEEw0o78j4YLRZHkZ2z1QrqVpohYPnGlsUsgURWtIYfAheaPBaXbCvR-8upz97KpMdYkHqezdS2hcrtdKybtQM1kcQcyolU7C7HAeX36wAuzRrl9rsUpvtGnto1oo59uXkdwVdH7IbMZb3rOzM7F_s348YzX_9GynbgpFGJB8z4WR9iv_f8w9fNowR</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Hung, Wei-Hsiu</creator><creator>Bernasek, Steven L</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19960201</creationdate><title>The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface</title><author>Hung, Wei-Hsiu ; Bernasek, Steven L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adsorption</topic><topic>Chemistry</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Formaldehyde</topic><topic>Formic acid</topic><topic>General and physical chemistry</topic><topic>Solid-gas interface</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Wei-Hsiu</creatorcontrib><creatorcontrib>Bernasek, Steven L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Wei-Hsiu</au><au>Bernasek, Steven L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface</atitle><jtitle>Surface science</jtitle><date>1996-02-01</date><risdate>1996</risdate><volume>346</volume><issue>1</issue><spage>165</spage><epage>188</epage><pages>165-188</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The adsorption and thermal reaction of formaldehyde and formic acid on the clean and modified Fe(100) surface is studied. CH 2O adsorbs molecularly on the clean Fe(100) surface without the formation of polymer (CH 2O) x (paraformaldehyde) at exposures below 3.0 L. At 223 K, molecularly adsorbed CH 2O is hydrogenated to form methoxy and dehydrogenated to form surface CO. Coadsorption of H 2O and hydroxy species can oxidize this methoxy species to form formate. Methanol is observed as one of the desorption products for the coadsorption of H 2O or OH and CH 2O. The presence of adatomic C induces the formation of (CH 2O) x polymers on the surface and changes the mechanism of CH 2O decomposition. The presence of adatomic O decreases CH 2O decomposition and increases molecular CH 2O desorption. Oxygen alters the reactivity of the surface but not the reaction pathway for CH 2O decomposition. At low exposures, formic acid adsorbs to produce a bidentate formate species on the Fe(100) surface at 100 K. A monodentate formate is observed at high coverage, which converts into a bidentate formate with higher symmetry at 253 K. This surface formale further decomposes to either desorb CO or form O (ad) and C (ad). On the c(2×2)-O and p(1×2)-OH surfaces, formic acid transfers carboxylic hydrogen to preadsorbed oxygen or hydroxyl to desorb H 2O during the thermal decomposition reaction.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0039-6028(95)00905-1</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 1996-02, Vol.346 (1), p.165-188
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_26362453
source Elsevier
subjects Adsorption
Chemistry
Decomposition
Exact sciences and technology
Formaldehyde
Formic acid
General and physical chemistry
Solid-gas interface
Surface physical chemistry
title The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20adsorption%20and%20decomposition%20of%20formaldehyde%20and%20formic%20acid%20on%20the%20clean%20and%20modified%20Fe%20(100)%20surface&rft.jtitle=Surface%20science&rft.au=Hung,%20Wei-Hsiu&rft.date=1996-02-01&rft.volume=346&rft.issue=1&rft.spage=165&rft.epage=188&rft.pages=165-188&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/0039-6028(95)00905-1&rft_dat=%3Cproquest_cross%3E26362453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-23c8e1a1503dae8df868dae8829be43237071a0b4c7c12701f7e6cfdffd160d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26362453&rft_id=info:pmid/&rfr_iscdi=true