Loading…
Novel transducers for high-channel-count neuroelectronic recording interfaces
Neuroelectronic interfaces with the nervous system are an essential technology in state-of-the-art neuroscience research aiming to uncover the fundamental working mechanisms of the brain. Progress towards increased spatio-temporal resolution has been tightly linked to the advance of microelectronics...
Saved in:
Published in: | Current opinion in biotechnology 2021-12, Vol.72, p.39-47 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neuroelectronic interfaces with the nervous system are an essential technology in state-of-the-art neuroscience research aiming to uncover the fundamental working mechanisms of the brain. Progress towards increased spatio-temporal resolution has been tightly linked to the advance of microelectronics technology and novel materials. Translation of these technologies to neuroscience has resulted in multichannel neural probes and acquisition systems enabling the recording of brain signals using thousands of channels. This review provides an overview of state-of-the-art neuroelectronic technologies, with emphasis on recording site architectures which enable the implementation of addressable arrays for high-channel-count neural interfaces. In this field, active transduction mechanisms are gaining importance fueled by novel materials, as they facilitate the implementation of high density addressable arrays. |
---|---|
ISSN: | 0958-1669 1879-0429 |
DOI: | 10.1016/j.copbio.2021.10.002 |