Loading…
A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems
By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed...
Saved in:
Published in: | Finite elements in analysis and design 1996, Vol.21 (3), p.201-212 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3 |
container_end_page | 212 |
container_issue | 3 |
container_start_page | 201 |
container_title | Finite elements in analysis and design |
container_volume | 21 |
creator | Zou, Guiping Tang, Limin |
description | By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly. |
doi_str_mv | 10.1016/0168-874X(95)00039-V |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26366018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0168874X9500039V</els_id><sourcerecordid>26366018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVoINtN_kEOOpSSHNzow9LKl0BY0m5hIZck9CYUeUzV2par0Qb876vdDTmWHoaB4XlnhoeQS86-cMb1TSlTmVX946pR14wx2VTPJ2TBzUpUuhHqA1m8I2fkI-KvAimh6wVxdxRhCJUbXT_n4F1PMfa7HOJIu5ho_gm0nUc3BE8T4BRHBBq7Mg_-N_VxmCKGDHTqXQakYaSbwva5xHHGDAOek9PO9QgXb31Jnr7eP6431fbh2_f13bbyslG5kpqx2uuVBq6ZMi_S8FZ3jaoVV85ILhQTwtSGcWVWHfet16C6FzDSSCcUyCX5fNw7pfhnB5jtENBD37sR4g6t0FJrxs3_gFwY3RSwPoI-RcQEnZ1SGFyaLWd2L97urdq9VdsoexBvn0vs09t-h8Vnl9zoA75nRWNqeXjj9ohBkfIaIFn0AUYPbUjgs21j-Pedv3l4lyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26312869</pqid></control><display><type>article</type><title>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zou, Guiping ; Tang, Limin</creator><creatorcontrib>Zou, Guiping ; Tang, Limin</creatorcontrib><description>By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/0168-874X(95)00039-V</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Laminates ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Structural and continuum mechanics ; Technology of polymers ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Finite elements in analysis and design, 1996, Vol.21 (3), p.201-212</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</citedby><cites>FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2984318$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Guiping</creatorcontrib><creatorcontrib>Tang, Limin</creatorcontrib><title>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</title><title>Finite elements in analysis and design</title><description>By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminates</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVoINtN_kEOOpSSHNzow9LKl0BY0m5hIZck9CYUeUzV2par0Qb876vdDTmWHoaB4XlnhoeQS86-cMb1TSlTmVX946pR14wx2VTPJ2TBzUpUuhHqA1m8I2fkI-KvAimh6wVxdxRhCJUbXT_n4F1PMfa7HOJIu5ho_gm0nUc3BE8T4BRHBBq7Mg_-N_VxmCKGDHTqXQakYaSbwva5xHHGDAOek9PO9QgXb31Jnr7eP6431fbh2_f13bbyslG5kpqx2uuVBq6ZMi_S8FZ3jaoVV85ILhQTwtSGcWVWHfet16C6FzDSSCcUyCX5fNw7pfhnB5jtENBD37sR4g6t0FJrxs3_gFwY3RSwPoI-RcQEnZ1SGFyaLWd2L97urdq9VdsoexBvn0vs09t-h8Vnl9zoA75nRWNqeXjj9ohBkfIaIFn0AUYPbUjgs21j-Pedv3l4lyE</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Zou, Guiping</creator><creator>Tang, Limin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</title><author>Zou, Guiping ; Tang, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminates</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Guiping</creatorcontrib><creatorcontrib>Tang, Limin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Guiping</au><au>Tang, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</atitle><jtitle>Finite elements in analysis and design</jtitle><date>1996</date><risdate>1996</risdate><volume>21</volume><issue>3</issue><spage>201</spage><epage>212</epage><pages>201-212</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-874X(95)00039-V</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-874X |
ispartof | Finite elements in analysis and design, 1996, Vol.21 (3), p.201-212 |
issn | 0168-874X 1872-6925 |
language | eng |
recordid | cdi_proquest_miscellaneous_26366018 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Exact sciences and technology Forms of application and semi-finished materials Fundamental areas of phenomenology (including applications) Laminates Physics Polymer industry, paints, wood Solid mechanics Structural and continuum mechanics Technology of polymers Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-analytical%20solution%20for%20the%20dynamic%20response%20of%20thick%20composite%20plates%20in%20Hamilton%20systems&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Zou,%20Guiping&rft.date=1996&rft.volume=21&rft.issue=3&rft.spage=201&rft.epage=212&rft.pages=201-212&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/0168-874X(95)00039-V&rft_dat=%3Cproquest_cross%3E26366018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26312869&rft_id=info:pmid/&rfr_iscdi=true |