Loading…

A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems

By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design 1996, Vol.21 (3), p.201-212
Main Authors: Zou, Guiping, Tang, Limin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3
cites cdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3
container_end_page 212
container_issue 3
container_start_page 201
container_title Finite elements in analysis and design
container_volume 21
creator Zou, Guiping
Tang, Limin
description By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.
doi_str_mv 10.1016/0168-874X(95)00039-V
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26366018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0168874X9500039V</els_id><sourcerecordid>26366018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVoINtN_kEOOpSSHNzow9LKl0BY0m5hIZck9CYUeUzV2par0Qb876vdDTmWHoaB4XlnhoeQS86-cMb1TSlTmVX946pR14wx2VTPJ2TBzUpUuhHqA1m8I2fkI-KvAimh6wVxdxRhCJUbXT_n4F1PMfa7HOJIu5ho_gm0nUc3BE8T4BRHBBq7Mg_-N_VxmCKGDHTqXQakYaSbwva5xHHGDAOek9PO9QgXb31Jnr7eP6431fbh2_f13bbyslG5kpqx2uuVBq6ZMi_S8FZ3jaoVV85ILhQTwtSGcWVWHfet16C6FzDSSCcUyCX5fNw7pfhnB5jtENBD37sR4g6t0FJrxs3_gFwY3RSwPoI-RcQEnZ1SGFyaLWd2L97urdq9VdsoexBvn0vs09t-h8Vnl9zoA75nRWNqeXjj9ohBkfIaIFn0AUYPbUjgs21j-Pedv3l4lyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26312869</pqid></control><display><type>article</type><title>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zou, Guiping ; Tang, Limin</creator><creatorcontrib>Zou, Guiping ; Tang, Limin</creatorcontrib><description>By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/0168-874X(95)00039-V</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Laminates ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Structural and continuum mechanics ; Technology of polymers ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Finite elements in analysis and design, 1996, Vol.21 (3), p.201-212</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</citedby><cites>FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2984318$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Guiping</creatorcontrib><creatorcontrib>Tang, Limin</creatorcontrib><title>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</title><title>Finite elements in analysis and design</title><description>By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminates</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVoINtN_kEOOpSSHNzow9LKl0BY0m5hIZck9CYUeUzV2par0Qb876vdDTmWHoaB4XlnhoeQS86-cMb1TSlTmVX946pR14wx2VTPJ2TBzUpUuhHqA1m8I2fkI-KvAimh6wVxdxRhCJUbXT_n4F1PMfa7HOJIu5ho_gm0nUc3BE8T4BRHBBq7Mg_-N_VxmCKGDHTqXQakYaSbwva5xHHGDAOek9PO9QgXb31Jnr7eP6431fbh2_f13bbyslG5kpqx2uuVBq6ZMi_S8FZ3jaoVV85ILhQTwtSGcWVWHfet16C6FzDSSCcUyCX5fNw7pfhnB5jtENBD37sR4g6t0FJrxs3_gFwY3RSwPoI-RcQEnZ1SGFyaLWd2L97urdq9VdsoexBvn0vs09t-h8Vnl9zoA75nRWNqeXjj9ohBkfIaIFn0AUYPbUjgs21j-Pedv3l4lyE</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Zou, Guiping</creator><creator>Tang, Limin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</title><author>Zou, Guiping ; Tang, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminates</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Guiping</creatorcontrib><creatorcontrib>Tang, Limin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Guiping</au><au>Tang, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems</atitle><jtitle>Finite elements in analysis and design</jtitle><date>1996</date><risdate>1996</risdate><volume>21</volume><issue>3</issue><spage>201</spage><epage>212</epage><pages>201-212</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>By introducing canonical functions in the time direction, the mixed state Hamilton equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method incorporates the separation of variables, the finite element discretization employed in the plane of lamina, and the exact solution in the thickness direction derived by the state-space control method. For applying the transfer matrix method, the continuity of displacements and stresses at the two interfaces is satisfied, and the relational expression at the top and bottom surfaces is established. No matter how many layers are considered, by introducing the traction boundary condition at the top and bottom plate surfaces, the final problem always leads to solving a set of algebraic equations of unknown joint displacements at the top surface, so that the number of variables is reduced greatly.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-874X(95)00039-V</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-874X
ispartof Finite elements in analysis and design, 1996, Vol.21 (3), p.201-212
issn 0168-874X
1872-6925
language eng
recordid cdi_proquest_miscellaneous_26366018
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Exact sciences and technology
Forms of application and semi-finished materials
Fundamental areas of phenomenology (including applications)
Laminates
Physics
Polymer industry, paints, wood
Solid mechanics
Structural and continuum mechanics
Technology of polymers
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title A semi-analytical solution for the dynamic response of thick composite plates in Hamilton systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-analytical%20solution%20for%20the%20dynamic%20response%20of%20thick%20composite%20plates%20in%20Hamilton%20systems&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Zou,%20Guiping&rft.date=1996&rft.volume=21&rft.issue=3&rft.spage=201&rft.epage=212&rft.pages=201-212&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/0168-874X(95)00039-V&rft_dat=%3Cproquest_cross%3E26366018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-36004c676e16058b381d6f954515a8312502284801587f1cdc6e5fbe8383a25e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26312869&rft_id=info:pmid/&rfr_iscdi=true