Loading…
Mass excess estimations using artificial neural networks
Mass excess knowledge is important to investigate the fundamental properties of atomic nuclei. It is a meaningful and important parameter for the determinations of nucleon binding energy, nuclear reaction Q value, energy threshold and plays an undeniable role in the theoretical calculations of a rea...
Saved in:
Published in: | Applied radiation and isotopes 2022-06, Vol.184, p.110162-110162, Article 110162 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mass excess knowledge is important to investigate the fundamental properties of atomic nuclei. It is a meaningful and important parameter for the determinations of nucleon binding energy, nuclear reaction Q value, energy threshold and plays an undeniable role in the theoretical calculations of a reaction cross-section value in terms of the quantities it affects. In this research, a new artificial neural network (ANN) based algorithm is proposed to determine the mass excess of nuclei. The experimental data, which were taken from the RIPL3 database have been used for training the ANN. Proton, neutron, and mass numbers have been chosen as the input parameters. The Levenberg-Marquardt (LM) algorithm has been employed for the training section. The correlation coefficients have been found as 0.99984, 0.99977, 0.99984, and 0.99983 for training, validation, and testing, respectively. To validate our ANN results, ANN findings have been given as input parameters on TALYS 1.95 code and 56Fe(p,x) nuclear reactions have been simulated. The obtained results were compared with the literature. In conclusion, the findings of this study point to the ANN as a recommended tool that can be used to calculate estimates of mass information.
•Accurate artificial neural network (ANN) algorithms have been developed to estimate mass excess.•Levenberg-Marquardt algorithm is presented for classification algorithms.•To validate the ANN estimations, 56Fe(p,x) reactions have been investigated by using newly obtained mass excess data. |
---|---|
ISSN: | 0969-8043 1872-9800 |
DOI: | 10.1016/j.apradiso.2022.110162 |