Loading…

Thermo-Viscoplastic Modeling of Machining Process Using a Mixed Finite Element Method

This paper considers a thermo-viscoplastic model of the steady state orthogonal machining process by using a three-field mixed finite element method based on the Hu-Washizu variational principle. Assuming a trial chip geometry, work and tool material properties, and cutting conditions (cutting speed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing science and engineering 1996-11, Vol.118 (4), p.470-482
Main Authors: Wu, Jung-Shu, Dillon, O. W., Lu, Wei-Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers a thermo-viscoplastic model of the steady state orthogonal machining process by using a three-field mixed finite element method based on the Hu-Washizu variational principle. Assuming a trial chip geometry, work and tool material properties, and cutting conditions (cutting speed, feed rate and rake angle), detailed information on the state of the stresses, deformation, and temperature distributions in the workpiece and tool are obtained. This approach is shown to satisfy the nontrivial stress boundary condition better than the machining model that is based on the compatible displacement finite element method. The heat generated due to the plastic deformation, to the friction, and the heat conducted into the tool are calculated. The effects of the heat conduction and friction on the temperature field are studied. The isothermal machining case is also considered to study the thermal effect on the machining process. Numerical results are given for the aluminum 6061 alloy and pure titanium under several cutting conditions.
ISSN:1087-1357
1528-8935
DOI:10.1115/1.2831056