Loading…

EEG microstate correlates of emotion dynamics and stimulation content during video watching

EEG microstates have been widely adopted to understand the complex and dynamic-changing process in dynamic brain systems, but how microstates are temporally modulated by emotion dynamics is still unclear. An investigation of EEG microstates under video-evoking emotion dynamics modulation would provi...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2023-01, Vol.33 (3), p.523-542
Main Authors: Hu, Wanrou, Zhang, Zhiguo, Zhao, Huilin, Zhang, Li, Li, Linling, Huang, Gan, Liang, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:EEG microstates have been widely adopted to understand the complex and dynamic-changing process in dynamic brain systems, but how microstates are temporally modulated by emotion dynamics is still unclear. An investigation of EEG microstates under video-evoking emotion dynamics modulation would provide a novel insight into the understanding of temporal dynamics of functional brain networks. In the present study, we postulate that emotional states dynamically modulate the microstate patterns, and perform an in-depth investigation between EEG microstates and emotion dynamics under a video-watching task. By mapping from subjective-experienced emotion states and objective-presented stimulation content to EEG microstates, we gauge the comprehensive associations among microstates, emotions, and multimedia stimulation. The results show that emotion dynamics could be well revealed by four EEG microstates (MS1, MS2, MS3, and MS4), where MS3 and MS4 are found to be highly correlated to different emotion states (emotion task effect and level effect) and the affective information involved in the multimedia content (visual and audio). In this work, we reveal the microstate patterns related to emotion dynamics from sensory and stimulation dimensions, which deepens the understanding of the neural representation under emotion dynamics modulation and will be beneficial for the future study of brain dynamic systems.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhac082