Loading…
IR-Based Novel Device for Real-Time Online Acquisition of Fish Heart ECG Signals
We developed an infrared (IR)-based real-time online monitoring device (US Patent No: US 10,571,448 B2) to quantify heart electrocardiogram (ECG) signals to assess the water quality based on physiological changes in fish. The device is compact, allowing us to monitor cardiac function for an extended...
Saved in:
Published in: | Environmental science & technology 2022-04, Vol.56 (7), p.4262-4271 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed an infrared (IR)-based real-time online monitoring device (US Patent No: US 10,571,448 B2) to quantify heart electrocardiogram (ECG) signals to assess the water quality based on physiological changes in fish. The device is compact, allowing us to monitor cardiac function for an extended period (from 7 to 30 days depending on the rechargeable battery capacity) without function injury and disturbance of swimming activity. The electrode samples and the biopotential amplifier and microcontroller process the cardiac-electrical signals. An infrared transceiver transmits denoised electrocardiac signals to complete the signal transmission. The infrared receiver array and biomedical acquisition signal processing system send signals to the computer. The software in the computer processes the data in real time. We quantified ECG indexes (P-wave, Q-wave, R-wave, S-wave, T-wave, PR-interval, QRS-complex, and QT-interval) of carp precisely and incessantly under the different experimental setup (CuSO4 and deltamethrin). The ECG cue responses were chemical-specific based on CuSO4 and deltamethrin exposures. This study provides an additional technology for noninvasive water quality surveillance. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.1c07732 |