Loading…

Graph-theoretical exploration of the relation between conductivity and connectivity in heteroatom-containing single-molecule junctions

In this study, we employ the Sachs graph theory to formulate the conduction properties of a single-molecular junction consisting of a molecule in which one carbon atom of an alternant hydrocarbon is replaced with a heteroatom. The derived formula includes odd and even powers of the adjacency matrix,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-03, Vol.156 (9), p.091102-091102
Main Authors: Okazawa, Kazuki, Tsuji, Yuta, Yoshizawa, Kazunari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we employ the Sachs graph theory to formulate the conduction properties of a single-molecular junction consisting of a molecule in which one carbon atom of an alternant hydrocarbon is replaced with a heteroatom. The derived formula includes odd and even powers of the adjacency matrix, unlike the graph of the parental structure. These powers correspond to odd- and even-length walks. Furthermore, because the heteroatom is represented as a self-loop of unit length in the graph, an odd number of passes of the self-loop will change the parity of the length of the walk. To confirm the aforementioned effects of heteroatoms on conduction in an actual sample, the conduction behavior of meta-connected molecular junctions consisting of a heterocyclic six-membered ring, whose conductive properties have already been experimentally determined, was analyzed based on the enumerated number of walks.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0083486