Loading…

Paper-Based Flow Sensor for the Detection of Hyaluronidase via an Enzyme Hydrolysis-Induced Viscosity Change in a Polymer Solution

Hyaluronidase (HAase) is implicated in inflammation, cancer development, and allergic reaction. The detection of HAase is significantly important in clinical diagnosis and medical treatment. Herein, we propose a new principle for the development of equipment-free and label-free paper-based flow sens...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2022-03, Vol.94 (11), p.4643-4649
Main Authors: Zhao, Binglu, Qi, Lubin, Tai, Wenjun, Zhao, Mei, Chen, Xiangfeng, Yu, Li, Shi, Jianguo, Wang, Xiao, Lin, Jin-Ming, Hu, Qiongzheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyaluronidase (HAase) is implicated in inflammation, cancer development, and allergic reaction. The detection of HAase is significantly important in clinical diagnosis and medical treatment. Herein, we propose a new principle for the development of equipment-free and label-free paper-based flow sensors based on the enzymatic hydrolysis-induced viscosity change in a stimuli-responsive polymer solution, which increases the water flow distance on the pH indicator paper. The detection of HAase is demonstrated as an example. This facile and versatile method can overcome the potential drawbacks of traditional hydrogel-based sensors, including complex preparation steps, slow response time, or low sensitivity. Moreover, it can also avoid the use of specialized instruments, labeled molecules, or functionalized nanoparticles in the sensors developed using the polymer solutions. Using this strategy, the detection of HAase is achieved with a limit of detection as low as 0.2 U/mL. Also, it works well in human urine. Additionally, the detection of tannic acid, which is an inhibitor of HAase, is also fulfilled. Overall, a simple, efficient, high-throughput, and low-cost detection method is developed for the rapid and quantitative detection of HAase and its inhibitor without the use of labeled molecules, synthetic particles, and specialized instruments. As only minimal reagents of HAase, HA, and paper are used, it is very promising in the development of commercial kits for point-of-care testing.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c04552