Loading…

Combined geospatial, geophysical and hydrochemical studies on coastal aquifer at Muttom–Mandaikadu area, Tamilnadu, India

A study was conducted in the Muttom–Mandaikadu coastal region, which is among the profitable coastal sectors in Tamil Nadu, to find the groundwater potential as well as its quality by an integrated geospatial, geophysical and geochemical approach. The GIS-based weighted overlay analysis was used to...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2022-10, Vol.29 (48), p.72397-72416
Main Authors: Stanly, Rajkumar, Yasala, Srinivas, Nair, Nithya C., Subash, Arunbose
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study was conducted in the Muttom–Mandaikadu coastal region, which is among the profitable coastal sectors in Tamil Nadu, to find the groundwater potential as well as its quality by an integrated geospatial, geophysical and geochemical approach. The GIS-based weighted overlay analysis was used to merge five thematic layers to create the groundwater potential zone map. The geophysical resistivity survey was performed in the study area at 26 stations by applying Schlumberger vertical electrical sounding technique. The observed data were inverted to develop a subsurface lithology model and its electrical properties using one-dimensional software AGI Earth Imager. The combined vertical electrical sounding result and remote sensing thematic maps have exposed the potential zone of groundwater in the study area. From the inferred results, it was observed that 20.8% of the area has ample groundwater potential and 7.7% of the area has scanty groundwater potential. The saltwater intrusion zone had been predicted by validating aquifer resistivity with Dar-Zarrouck (D-Z) parameter. From the geophysical and geochemical interpreted results, it was found that aquifers in 34.6% of the study area are vulnerable to saline contamination. The 4-D model with integrated groundwater quantity and quality suggests that the study area's Western part falls under excellent-to-good groundwater potential zone and excellent water quality.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-022-19473-8