Loading…
Kisspeptin-13 prevented the electrophysiological alterations induced by amyloid-beta pathology in rat: Possible involvement of stromal interaction molecules and pCREB
Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin recept...
Saved in:
Published in: | Brain research bulletin 2022-06, Vol.184, p.13-23 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aβ-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aβ-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aβ treatment affected the action potential features. These electrophysiological changes induced by Aβ were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aβ injection into the entorhinal cortex, however, prevented the excitatory effect of Aβ on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aβ on spike parameters. In addition, the KP-13 application after Aβ treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aβ treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aβ.
•kisspeptin-13 prevented the Aβ-induced hyperexcitability in CA1 pyramidal neurons.•kisspeptin-13 treatment prevented Aβ-induced hippocampal overexpression of STIMs.•kisspeptin-13 treatment prevented the decreasing effect of Aβ on pCREB/CREB ratio. |
---|---|
ISSN: | 0361-9230 1873-2747 |
DOI: | 10.1016/j.brainresbull.2022.03.003 |