Loading…

The Role of TAK1 in RANKL-Induced Osteoclastogenesis

Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases...

Full description

Saved in:
Bibliographic Details
Published in:Calcified tissue international 2022-07, Vol.111 (1), p.1-12
Main Authors: Jianwei, Wu, Ye, Tian, Hongwei, Wang, Dachuan, Li, Fei, Zou, Jianyuan, Jiang, Hongli, Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543
cites cdi_FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543
container_end_page 12
container_issue 1
container_start_page 1
container_title Calcified tissue international
container_volume 111
creator Jianwei, Wu
Ye, Tian
Hongwei, Wang
Dachuan, Li
Fei, Zou
Jianyuan, Jiang
Hongli, Wang
description Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.
doi_str_mv 10.1007/s00223-022-00967-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2639223910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680445734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwDl27HisKj6qVlSqymwl8aWkSuMSNwP99bikfIiB5Wzrnnt9egi5pHBLAeSdA4giFvoSAighw90R6VPO_DOJ5PGve4-cObcCoFwIcUp6LI4SwansE754xWBuKwxsESyGExqUdTAfPk-m4bg2bY4mmLkt2rxK3dYusUZXunNyUqSVw4vDOSAvD_eL0VM4nT2OR8NpmDMZb0MDhjFQKqdZJJUoqMqokigpTyhwzDkgR5EZNCbOC8ogk4lhMkWUmIqYswG56XI3jX1r0W31unQ5VlVao22djgRT3oCi4NHrP-jKtk3tt_NUApzHku0Do47KG-tcg4XeNOU6bd41Bb13qjun2hf96VTv_NDVIbrN1mi-R74keoB1gPOteonNz9__xH4AyVt_Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680445734</pqid></control><display><type>article</type><title>The Role of TAK1 in RANKL-Induced Osteoclastogenesis</title><source>Springer Link</source><creator>Jianwei, Wu ; Ye, Tian ; Hongwei, Wang ; Dachuan, Li ; Fei, Zou ; Jianyuan, Jiang ; Hongli, Wang</creator><creatorcontrib>Jianwei, Wu ; Ye, Tian ; Hongwei, Wang ; Dachuan, Li ; Fei, Zou ; Jianyuan, Jiang ; Hongli, Wang</creatorcontrib><description>Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.</description><identifier>ISSN: 1432-0827</identifier><identifier>ISSN: 0171-967X</identifier><identifier>EISSN: 1432-0827</identifier><identifier>DOI: 10.1007/s00223-022-00967-z</identifier><identifier>PMID: 35286417</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Bone remodeling ; Bone resorption ; Bone turnover ; Cell Biology ; Cell survival ; Endocrinology ; Homeostasis ; Intracellular signalling ; Kinases ; Life Sciences ; MAP kinase ; NF-κB protein ; Orthopedics ; Osteoclastogenesis ; Osteoclasts ; Osteolysis ; Osteoporosis ; Protein kinase ; Review Article ; Signal transduction ; TAK1 protein ; TRANCE protein</subject><ispartof>Calcified tissue international, 2022-07, Vol.111 (1), p.1-12</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543</citedby><cites>FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543</cites><orcidid>0000-0002-2096-6625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35286417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianwei, Wu</creatorcontrib><creatorcontrib>Ye, Tian</creatorcontrib><creatorcontrib>Hongwei, Wang</creatorcontrib><creatorcontrib>Dachuan, Li</creatorcontrib><creatorcontrib>Fei, Zou</creatorcontrib><creatorcontrib>Jianyuan, Jiang</creatorcontrib><creatorcontrib>Hongli, Wang</creatorcontrib><title>The Role of TAK1 in RANKL-Induced Osteoclastogenesis</title><title>Calcified tissue international</title><addtitle>Calcif Tissue Int</addtitle><addtitle>Calcif Tissue Int</addtitle><description>Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bone remodeling</subject><subject>Bone resorption</subject><subject>Bone turnover</subject><subject>Cell Biology</subject><subject>Cell survival</subject><subject>Endocrinology</subject><subject>Homeostasis</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>NF-κB protein</subject><subject>Orthopedics</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteolysis</subject><subject>Osteoporosis</subject><subject>Protein kinase</subject><subject>Review Article</subject><subject>Signal transduction</subject><subject>TAK1 protein</subject><subject>TRANCE protein</subject><issn>1432-0827</issn><issn>0171-967X</issn><issn>1432-0827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwDl27HisKj6qVlSqymwl8aWkSuMSNwP99bikfIiB5Wzrnnt9egi5pHBLAeSdA4giFvoSAighw90R6VPO_DOJ5PGve4-cObcCoFwIcUp6LI4SwansE754xWBuKwxsESyGExqUdTAfPk-m4bg2bY4mmLkt2rxK3dYusUZXunNyUqSVw4vDOSAvD_eL0VM4nT2OR8NpmDMZb0MDhjFQKqdZJJUoqMqokigpTyhwzDkgR5EZNCbOC8ogk4lhMkWUmIqYswG56XI3jX1r0W31unQ5VlVao22djgRT3oCi4NHrP-jKtk3tt_NUApzHku0Do47KG-tcg4XeNOU6bd41Bb13qjun2hf96VTv_NDVIbrN1mi-R74keoB1gPOteonNz9__xH4AyVt_Dw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jianwei, Wu</creator><creator>Ye, Tian</creator><creator>Hongwei, Wang</creator><creator>Dachuan, Li</creator><creator>Fei, Zou</creator><creator>Jianyuan, Jiang</creator><creator>Hongli, Wang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2096-6625</orcidid></search><sort><creationdate>20220701</creationdate><title>The Role of TAK1 in RANKL-Induced Osteoclastogenesis</title><author>Jianwei, Wu ; Ye, Tian ; Hongwei, Wang ; Dachuan, Li ; Fei, Zou ; Jianyuan, Jiang ; Hongli, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bone remodeling</topic><topic>Bone resorption</topic><topic>Bone turnover</topic><topic>Cell Biology</topic><topic>Cell survival</topic><topic>Endocrinology</topic><topic>Homeostasis</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>NF-κB protein</topic><topic>Orthopedics</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteolysis</topic><topic>Osteoporosis</topic><topic>Protein kinase</topic><topic>Review Article</topic><topic>Signal transduction</topic><topic>TAK1 protein</topic><topic>TRANCE protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianwei, Wu</creatorcontrib><creatorcontrib>Ye, Tian</creatorcontrib><creatorcontrib>Hongwei, Wang</creatorcontrib><creatorcontrib>Dachuan, Li</creatorcontrib><creatorcontrib>Fei, Zou</creatorcontrib><creatorcontrib>Jianyuan, Jiang</creatorcontrib><creatorcontrib>Hongli, Wang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Calcified tissue international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jianwei, Wu</au><au>Ye, Tian</au><au>Hongwei, Wang</au><au>Dachuan, Li</au><au>Fei, Zou</au><au>Jianyuan, Jiang</au><au>Hongli, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of TAK1 in RANKL-Induced Osteoclastogenesis</atitle><jtitle>Calcified tissue international</jtitle><stitle>Calcif Tissue Int</stitle><addtitle>Calcif Tissue Int</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>111</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1432-0827</issn><issn>0171-967X</issn><eissn>1432-0827</eissn><abstract>Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35286417</pmid><doi>10.1007/s00223-022-00967-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2096-6625</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-0827
ispartof Calcified tissue international, 2022-07, Vol.111 (1), p.1-12
issn 1432-0827
0171-967X
1432-0827
language eng
recordid cdi_proquest_miscellaneous_2639223910
source Springer Link
subjects Biochemistry
Biomedical and Life Sciences
Bone remodeling
Bone resorption
Bone turnover
Cell Biology
Cell survival
Endocrinology
Homeostasis
Intracellular signalling
Kinases
Life Sciences
MAP kinase
NF-κB protein
Orthopedics
Osteoclastogenesis
Osteoclasts
Osteolysis
Osteoporosis
Protein kinase
Review Article
Signal transduction
TAK1 protein
TRANCE protein
title The Role of TAK1 in RANKL-Induced Osteoclastogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20TAK1%20in%20RANKL-Induced%20Osteoclastogenesis&rft.jtitle=Calcified%20tissue%20international&rft.au=Jianwei,%20Wu&rft.date=2022-07-01&rft.volume=111&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1432-0827&rft.eissn=1432-0827&rft_id=info:doi/10.1007/s00223-022-00967-z&rft_dat=%3Cproquest_cross%3E2680445734%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-d0d33099c1b2796f19b197e7148104ec40e4e6bdedd5cf130b78d37aee7ea6543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680445734&rft_id=info:pmid/35286417&rfr_iscdi=true