Loading…
White‐Light Emission and Circularly Polarized Luminescence from a Chiral Copper(I) Coordination Polymer through Symmetry‐Breaking Crystallization
Achieving white‐light emission, especially white circularly polarized luminescence (CPL) from a single‐phase material is challenging. Herein, a pair of chiral CuI coordination polymers (1‐M and 1‐P) have been prepared by the asymmetrical assembly of achiral ligands and Cu2I2 clusters. The compounds...
Saved in:
Published in: | Angewandte Chemie International Edition 2022-05, Vol.61 (22), p.e202201590-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Achieving white‐light emission, especially white circularly polarized luminescence (CPL) from a single‐phase material is challenging. Herein, a pair of chiral CuI coordination polymers (1‐M and 1‐P) have been prepared by the asymmetrical assembly of achiral ligands and Cu2I2 clusters. The compounds display dual emission bands and can be used as single‐phase white‐light phosphors, achieving a “warm”‐white‐light‐emitting diode with an ultra‐high color rendering index (CRI) of 93.4 and an appropriate correlated color temperature (CCT) of 3632 K. Meanwhile, corresponding CPL signals with maximum dissymmetry factor |glum|=8×10−3 have been observed. Hence, intrinsic white‐light emission and CPL have been realized simultaneously in coordination polymers for the first time. This work gains insight into the nature of chiral assembly from achiral units and offers a prospect for the development of single‐phase white‐CPL materials.
A pair of chiral CuI coordination polymers (1‐P/M) were produced from achiral precursors by crystallization‐driven symmetry‐breaking assembly. The enantiomers feature unique helical layered structures and tunable dual‐emission photoluminescence, achieving intrinsic “warm”‐white emitting with an ultra‐high color rendering index (93.4) and circularly polarized luminescence with a remarkable dissymmetry factor (8×10−3) simultaneously. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202201590 |