Loading…
Enhanced Intramuscular Bioavailability of Cannabidiol Using Nanocrystals: Formulation, In Vitro Appraisal, and Pharmacokinetics
Cannabidiol (CBD) has poor water solubility and is subjected to extensive first-pass metabolism. These absorption obstacles are responsible for low and variable oral bioavailability of CBD. This study endeavored to improve CBD bioavailability by intramuscular (IM) injection of CBD nanocrystals (CBD-...
Saved in:
Published in: | AAPS PharmSciTech 2022-03, Vol.23 (3), p.85-85, Article 85 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cannabidiol (CBD) has poor water solubility and is subjected to extensive first-pass metabolism. These absorption obstacles are responsible for low and variable oral bioavailability of CBD. This study endeavored to improve CBD bioavailability by intramuscular (IM) injection of CBD nanocrystals (CBD-NC). The nanocrystals were prepared by antisolvent precipitation method and were characterized in terms of the particle size, polydispersity index (PDI), zeta potential, morphology, and crystalline status. CBD-NC displayed a particle size of 141.7±1.5 nm, a PDI of 0.18±0.01, and a zeta potential of −25.73 mV. CBD-NC freeze-dried powder using bovine serum albumin (BSA) as cryoprotectant had good redispersibility, and the average particle size was 139.1±1.4 nm after reconstitution. Moreover, these freeze-dried powders were characterized for drug loading and pH and were evaluated for
in vitro
dissolution and
in vivo
studies in a rat model. The
in vivo
results showed that
AUC
0–24 h
and
C
max
of CBD by IM injection of CBD nanocrystals increased significantly compared with that of oral (P.O) administration of CBD nanocrystals and CBD oil solution. This underlines the nano-sized CBD could be suggested as a practical and simple nanosystem for IM delivery with improved bioavailability. More importantly, these results pave the way for future development of CBD-NC retentive dosage forms.
Graphical abstract |
---|---|
ISSN: | 1530-9932 1530-9932 |
DOI: | 10.1208/s12249-022-02239-3 |