Loading…
Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans
On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate–protein interactions but also through carbohydrate–carbohydrate interactions. These glycans exhibit considerable degrees of conformational varia...
Saved in:
Published in: | Glycoconjugate journal 2022-04, Vol.39 (2), p.219-228 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33 |
container_end_page | 228 |
container_issue | 2 |
container_start_page | 219 |
container_title | Glycoconjugate journal |
container_volume | 39 |
creator | Kato, Koichi Yamaguchi, Takumi Yagi-Utsumi, Maho |
description | On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate–protein interactions but also through carbohydrate–carbohydrate interactions. These glycans exhibit considerable degrees of conformational variability and often form clusters providing multiple binding sites. The integration of nuclear magnetic resonance spectroscopy and molecular dynamics simulation has made it possible to delineate the dynamical structures of carbohydrate chains. This approach has facilitated the remodeling of oligosaccharide conformational space in the prebound state to improve protein-binding affinity and has been applied to visualize dynamic carbohydrate–carbohydrate interactions that control glycoprotein–glycoprotein complex formation. Functional glycoclusters have been characterized by experimental and computational approaches applied to various model membranes and artificial self-assembling systems. This line of investigation has provided dynamic views of molecular assembling on glycoclusters, giving mechanistic insights into physiological and pathological molecular events on cell surfaces as well as clues for the design and creation of molecular systems exerting improved glycofunctions. Further development and accumulation of such studies will allow detailed understanding and artificial control of the “glycosynapse” foreseen by Dr. Sen-itiroh Hakomori. |
doi_str_mv | 10.1007/s10719-022-10056-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641000506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641000506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33</originalsourceid><addsrcrecordid>eNp9kcFvFCEYxYnR2G31H-jBTOKll6nfwLLA0TStNmniRc-EAWalYWCEmbbrX9-vu60mHuQCPH7fI3mPkNMOzjsA8al2IDrVAqUt3vmmvX9FVh0XrF0ruXlNVkAlbQEkHJHjWm8Bh9ZUviVHjFMlBeUr8nD5MPkSRp9mExuTXGPzOC2zmUNOqNifphg7I_J7LzV5aNwumTHYpg95zNHbJZrShIQQkk9M3dXZjxW1uxzvQto227izOYYpuP3RpPqOvBlMrP79835Cflxdfr_42t58-3J98fmmtUzwueXMDzAIZakw3gjlnOKdM47L3so1t7azlnkLnjEnuXSul7iQBO96PzB2Qs4OvlPJvxZfZz2Gan2MJvm8VE03awwPOGwQ_fgPepuXginsKaG4UAqQogfKllxr8YOeMD9TdroD_dSLPvSisRe970Xf49CHZ-ulH737M_JSBALsAFR8Sltf_v79H9tHsGOdyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647957990</pqid></control><display><type>article</type><title>Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans</title><source>Springer Link</source><creator>Kato, Koichi ; Yamaguchi, Takumi ; Yagi-Utsumi, Maho</creator><creatorcontrib>Kato, Koichi ; Yamaguchi, Takumi ; Yagi-Utsumi, Maho</creatorcontrib><description>On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate–protein interactions but also through carbohydrate–carbohydrate interactions. These glycans exhibit considerable degrees of conformational variability and often form clusters providing multiple binding sites. The integration of nuclear magnetic resonance spectroscopy and molecular dynamics simulation has made it possible to delineate the dynamical structures of carbohydrate chains. This approach has facilitated the remodeling of oligosaccharide conformational space in the prebound state to improve protein-binding affinity and has been applied to visualize dynamic carbohydrate–carbohydrate interactions that control glycoprotein–glycoprotein complex formation. Functional glycoclusters have been characterized by experimental and computational approaches applied to various model membranes and artificial self-assembling systems. This line of investigation has provided dynamic views of molecular assembling on glycoclusters, giving mechanistic insights into physiological and pathological molecular events on cell surfaces as well as clues for the design and creation of molecular systems exerting improved glycofunctions. Further development and accumulation of such studies will allow detailed understanding and artificial control of the “glycosynapse” foreseen by Dr. Sen-itiroh Hakomori.</description><identifier>ISSN: 0282-0080</identifier><identifier>EISSN: 1573-4986</identifier><identifier>DOI: 10.1007/s10719-022-10056-w</identifier><identifier>PMID: 35298725</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binding sites ; Biochemistry ; Biomedical and Life Sciences ; Carbohydrates ; Carbohydrates - chemistry ; Computer applications ; Glycolipids ; Glycoproteins ; Life Sciences ; Lipids ; Magnetic resonance spectroscopy ; Mini Review ; Molecular dynamics ; NMR ; Nuclear magnetic resonance ; Oligosaccharides ; Pathology ; Polysaccharides ; Polysaccharides - chemistry ; Protein Binding ; Protein interaction ; Tribute to Professor Sen-itiroh Hakomori</subject><ispartof>Glycoconjugate journal, 2022-04, Vol.39 (2), p.219-228</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33</citedby><cites>FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33</cites><orcidid>0000-0001-7187-9612 ; 0000-0001-8144-740X ; 0000-0003-1521-1153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35298725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kato, Koichi</creatorcontrib><creatorcontrib>Yamaguchi, Takumi</creatorcontrib><creatorcontrib>Yagi-Utsumi, Maho</creatorcontrib><title>Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans</title><title>Glycoconjugate journal</title><addtitle>Glycoconj J</addtitle><addtitle>Glycoconj J</addtitle><description>On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate–protein interactions but also through carbohydrate–carbohydrate interactions. These glycans exhibit considerable degrees of conformational variability and often form clusters providing multiple binding sites. The integration of nuclear magnetic resonance spectroscopy and molecular dynamics simulation has made it possible to delineate the dynamical structures of carbohydrate chains. This approach has facilitated the remodeling of oligosaccharide conformational space in the prebound state to improve protein-binding affinity and has been applied to visualize dynamic carbohydrate–carbohydrate interactions that control glycoprotein–glycoprotein complex formation. Functional glycoclusters have been characterized by experimental and computational approaches applied to various model membranes and artificial self-assembling systems. This line of investigation has provided dynamic views of molecular assembling on glycoclusters, giving mechanistic insights into physiological and pathological molecular events on cell surfaces as well as clues for the design and creation of molecular systems exerting improved glycofunctions. Further development and accumulation of such studies will allow detailed understanding and artificial control of the “glycosynapse” foreseen by Dr. Sen-itiroh Hakomori.</description><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>Computer applications</subject><subject>Glycolipids</subject><subject>Glycoproteins</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Magnetic resonance spectroscopy</subject><subject>Mini Review</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oligosaccharides</subject><subject>Pathology</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Tribute to Professor Sen-itiroh Hakomori</subject><issn>0282-0080</issn><issn>1573-4986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFvFCEYxYnR2G31H-jBTOKll6nfwLLA0TStNmniRc-EAWalYWCEmbbrX9-vu60mHuQCPH7fI3mPkNMOzjsA8al2IDrVAqUt3vmmvX9FVh0XrF0ruXlNVkAlbQEkHJHjWm8Bh9ZUviVHjFMlBeUr8nD5MPkSRp9mExuTXGPzOC2zmUNOqNifphg7I_J7LzV5aNwumTHYpg95zNHbJZrShIQQkk9M3dXZjxW1uxzvQto227izOYYpuP3RpPqOvBlMrP79835Cflxdfr_42t58-3J98fmmtUzwueXMDzAIZakw3gjlnOKdM47L3so1t7azlnkLnjEnuXSul7iQBO96PzB2Qs4OvlPJvxZfZz2Gan2MJvm8VE03awwPOGwQ_fgPepuXginsKaG4UAqQogfKllxr8YOeMD9TdroD_dSLPvSisRe970Xf49CHZ-ulH737M_JSBALsAFR8Sltf_v79H9tHsGOdyw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Kato, Koichi</creator><creator>Yamaguchi, Takumi</creator><creator>Yagi-Utsumi, Maho</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7187-9612</orcidid><orcidid>https://orcid.org/0000-0001-8144-740X</orcidid><orcidid>https://orcid.org/0000-0003-1521-1153</orcidid></search><sort><creationdate>20220401</creationdate><title>Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans</title><author>Kato, Koichi ; Yamaguchi, Takumi ; Yagi-Utsumi, Maho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>Computer applications</topic><topic>Glycolipids</topic><topic>Glycoproteins</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Magnetic resonance spectroscopy</topic><topic>Mini Review</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oligosaccharides</topic><topic>Pathology</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Tribute to Professor Sen-itiroh Hakomori</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Koichi</creatorcontrib><creatorcontrib>Yamaguchi, Takumi</creatorcontrib><creatorcontrib>Yagi-Utsumi, Maho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Glycoconjugate journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Koichi</au><au>Yamaguchi, Takumi</au><au>Yagi-Utsumi, Maho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans</atitle><jtitle>Glycoconjugate journal</jtitle><stitle>Glycoconj J</stitle><addtitle>Glycoconj J</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>219</spage><epage>228</epage><pages>219-228</pages><issn>0282-0080</issn><eissn>1573-4986</eissn><abstract>On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate–protein interactions but also through carbohydrate–carbohydrate interactions. These glycans exhibit considerable degrees of conformational variability and often form clusters providing multiple binding sites. The integration of nuclear magnetic resonance spectroscopy and molecular dynamics simulation has made it possible to delineate the dynamical structures of carbohydrate chains. This approach has facilitated the remodeling of oligosaccharide conformational space in the prebound state to improve protein-binding affinity and has been applied to visualize dynamic carbohydrate–carbohydrate interactions that control glycoprotein–glycoprotein complex formation. Functional glycoclusters have been characterized by experimental and computational approaches applied to various model membranes and artificial self-assembling systems. This line of investigation has provided dynamic views of molecular assembling on glycoclusters, giving mechanistic insights into physiological and pathological molecular events on cell surfaces as well as clues for the design and creation of molecular systems exerting improved glycofunctions. Further development and accumulation of such studies will allow detailed understanding and artificial control of the “glycosynapse” foreseen by Dr. Sen-itiroh Hakomori.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35298725</pmid><doi>10.1007/s10719-022-10056-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7187-9612</orcidid><orcidid>https://orcid.org/0000-0001-8144-740X</orcidid><orcidid>https://orcid.org/0000-0003-1521-1153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0282-0080 |
ispartof | Glycoconjugate journal, 2022-04, Vol.39 (2), p.219-228 |
issn | 0282-0080 1573-4986 |
language | eng |
recordid | cdi_proquest_miscellaneous_2641000506 |
source | Springer Link |
subjects | Binding sites Biochemistry Biomedical and Life Sciences Carbohydrates Carbohydrates - chemistry Computer applications Glycolipids Glycoproteins Life Sciences Lipids Magnetic resonance spectroscopy Mini Review Molecular dynamics NMR Nuclear magnetic resonance Oligosaccharides Pathology Polysaccharides Polysaccharides - chemistry Protein Binding Protein interaction Tribute to Professor Sen-itiroh Hakomori |
title | Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20characterization%20of%20dynamic%20biomolecular%20interaction%20systems%20involving%20glycolipid%20glycans&rft.jtitle=Glycoconjugate%20journal&rft.au=Kato,%20Koichi&rft.date=2022-04-01&rft.volume=39&rft.issue=2&rft.spage=219&rft.epage=228&rft.pages=219-228&rft.issn=0282-0080&rft.eissn=1573-4986&rft_id=info:doi/10.1007/s10719-022-10056-w&rft_dat=%3Cproquest_cross%3E2641000506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-53ef0f79c27aea79dd951dad58bc845cc1cc3ec0e33d858ddb8888ea70edbef33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647957990&rft_id=info:pmid/35298725&rfr_iscdi=true |