Loading…

Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms

The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, wh...

Full description

Saved in:
Bibliographic Details
Published in:ACS synthetic biology 2022-04, Vol.11 (4), p.1477-1487
Main Authors: Pang, Qingxiao, Ma, Shuai, Han, Hao, Jin, Xin, Liu, Xiaoqin, Su, Tianyuan, Qi, Qingsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13
cites cdi_FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13
container_end_page 1487
container_issue 4
container_start_page 1477
container_title ACS synthetic biology
container_volume 11
creator Pang, Qingxiao
Ma, Shuai
Han, Hao
Jin, Xin
Liu, Xiaoqin
Su, Tianyuan
Qi, Qingsheng
description The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, whereas there are few direct in vivo DNA assembly methods for other microorganisms. The use of shuttle vectors and tedious plasmid extraction and transformation procedures make DNA cloning in other microorganisms laborious and inefficient, especially for DNA library construction. In this study, we developed a “phage enzyme-assisted in vivo DNA assembly” (PEDA) method via combinatorial expression of T5 exonuclease and T4 DNA ligase. PEDA facilitated the in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and it is applicable to multiple microorganisms, such as Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. The cloning efficiency of optimized PEDA is much higher than that of the existing in vivo DNA assembly methods and comparable to that of in vitro DNA assembly, making it extremely suitable for DNA library cloning. Collectively, PEDA will boost the application of in vivo DNA assembly in various microorganisms.
doi_str_mv 10.1021/acssynbio.1c00529
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641000871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641000871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEYL8AC-mRy-L7Zbux5EAKgmoB_XadLuzWLIf2Nk1wV9vCUg8OZeZZJ73zcxLyDVnI85CfqcN4q7ObDPihjEZpmekH_KIB5JF4vzP3CNDxA3zJaWQIrkkPeHxhIuwT5YvH3oNdF5_7yoIJogWW8jpzDowLV3U9N1-NXT2NKF-B1VW7qit6aorW7stga6scU3j1rq2WOEVuSh0iTA89gF5u5-_Th-D5fPDYjpZBlqItA2yHMI4kWluhI7SApIki40x42jMhYRxJFgiY84MZGnBYybyWOQelxFkXBQFFwNye_DduuazA2xVZdFAWeoamg5V6J38u0m8R_kB9XciOijU1tlKu53iTO1zVKcc1TFHr7k52ndZBflJ8ZuaB4ID4LVq03Su9t_-Y_gDea9-xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641000871</pqid></control><display><type>article</type><title>Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pang, Qingxiao ; Ma, Shuai ; Han, Hao ; Jin, Xin ; Liu, Xiaoqin ; Su, Tianyuan ; Qi, Qingsheng</creator><creatorcontrib>Pang, Qingxiao ; Ma, Shuai ; Han, Hao ; Jin, Xin ; Liu, Xiaoqin ; Su, Tianyuan ; Qi, Qingsheng</creatorcontrib><description>The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, whereas there are few direct in vivo DNA assembly methods for other microorganisms. The use of shuttle vectors and tedious plasmid extraction and transformation procedures make DNA cloning in other microorganisms laborious and inefficient, especially for DNA library construction. In this study, we developed a “phage enzyme-assisted in vivo DNA assembly” (PEDA) method via combinatorial expression of T5 exonuclease and T4 DNA ligase. PEDA facilitated the in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and it is applicable to multiple microorganisms, such as Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. The cloning efficiency of optimized PEDA is much higher than that of the existing in vivo DNA assembly methods and comparable to that of in vitro DNA assembly, making it extremely suitable for DNA library cloning. Collectively, PEDA will boost the application of in vivo DNA assembly in various microorganisms.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.1c00529</identifier><identifier>PMID: 35298132</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteriophages - genetics ; Cloning, Molecular ; DNA - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genetic Vectors - genetics ; Plasmids - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism</subject><ispartof>ACS synthetic biology, 2022-04, Vol.11 (4), p.1477-1487</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13</citedby><cites>FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13</cites><orcidid>0000-0001-5693-6797 ; 0000-0003-4134-3459 ; 0000-0001-5758-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35298132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Qingxiao</creatorcontrib><creatorcontrib>Ma, Shuai</creatorcontrib><creatorcontrib>Han, Hao</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Liu, Xiaoqin</creatorcontrib><creatorcontrib>Su, Tianyuan</creatorcontrib><creatorcontrib>Qi, Qingsheng</creatorcontrib><title>Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, whereas there are few direct in vivo DNA assembly methods for other microorganisms. The use of shuttle vectors and tedious plasmid extraction and transformation procedures make DNA cloning in other microorganisms laborious and inefficient, especially for DNA library construction. In this study, we developed a “phage enzyme-assisted in vivo DNA assembly” (PEDA) method via combinatorial expression of T5 exonuclease and T4 DNA ligase. PEDA facilitated the in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and it is applicable to multiple microorganisms, such as Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. The cloning efficiency of optimized PEDA is much higher than that of the existing in vivo DNA assembly methods and comparable to that of in vitro DNA assembly, making it extremely suitable for DNA library cloning. Collectively, PEDA will boost the application of in vivo DNA assembly in various microorganisms.</description><subject>Bacteriophages - genetics</subject><subject>Cloning, Molecular</subject><subject>DNA - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genetic Vectors - genetics</subject><subject>Plasmids - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujEYL8AC-mRy-L7Zbux5EAKgmoB_XadLuzWLIf2Nk1wV9vCUg8OZeZZJ73zcxLyDVnI85CfqcN4q7ObDPihjEZpmekH_KIB5JF4vzP3CNDxA3zJaWQIrkkPeHxhIuwT5YvH3oNdF5_7yoIJogWW8jpzDowLV3U9N1-NXT2NKF-B1VW7qit6aorW7stga6scU3j1rq2WOEVuSh0iTA89gF5u5-_Th-D5fPDYjpZBlqItA2yHMI4kWluhI7SApIki40x42jMhYRxJFgiY84MZGnBYybyWOQelxFkXBQFFwNye_DduuazA2xVZdFAWeoamg5V6J38u0m8R_kB9XciOijU1tlKu53iTO1zVKcc1TFHr7k52ndZBflJ8ZuaB4ID4LVq03Su9t_-Y_gDea9-xw</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Pang, Qingxiao</creator><creator>Ma, Shuai</creator><creator>Han, Hao</creator><creator>Jin, Xin</creator><creator>Liu, Xiaoqin</creator><creator>Su, Tianyuan</creator><creator>Qi, Qingsheng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5693-6797</orcidid><orcidid>https://orcid.org/0000-0003-4134-3459</orcidid><orcidid>https://orcid.org/0000-0001-5758-2927</orcidid></search><sort><creationdate>20220415</creationdate><title>Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms</title><author>Pang, Qingxiao ; Ma, Shuai ; Han, Hao ; Jin, Xin ; Liu, Xiaoqin ; Su, Tianyuan ; Qi, Qingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteriophages - genetics</topic><topic>Cloning, Molecular</topic><topic>DNA - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genetic Vectors - genetics</topic><topic>Plasmids - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Qingxiao</creatorcontrib><creatorcontrib>Ma, Shuai</creatorcontrib><creatorcontrib>Han, Hao</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Liu, Xiaoqin</creatorcontrib><creatorcontrib>Su, Tianyuan</creatorcontrib><creatorcontrib>Qi, Qingsheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Qingxiao</au><au>Ma, Shuai</au><au>Han, Hao</au><au>Jin, Xin</au><au>Liu, Xiaoqin</au><au>Su, Tianyuan</au><au>Qi, Qingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>11</volume><issue>4</issue><spage>1477</spage><epage>1487</epage><pages>1477-1487</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, whereas there are few direct in vivo DNA assembly methods for other microorganisms. The use of shuttle vectors and tedious plasmid extraction and transformation procedures make DNA cloning in other microorganisms laborious and inefficient, especially for DNA library construction. In this study, we developed a “phage enzyme-assisted in vivo DNA assembly” (PEDA) method via combinatorial expression of T5 exonuclease and T4 DNA ligase. PEDA facilitated the in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and it is applicable to multiple microorganisms, such as Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. The cloning efficiency of optimized PEDA is much higher than that of the existing in vivo DNA assembly methods and comparable to that of in vitro DNA assembly, making it extremely suitable for DNA library cloning. Collectively, PEDA will boost the application of in vivo DNA assembly in various microorganisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35298132</pmid><doi>10.1021/acssynbio.1c00529</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5693-6797</orcidid><orcidid>https://orcid.org/0000-0003-4134-3459</orcidid><orcidid>https://orcid.org/0000-0001-5758-2927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2022-04, Vol.11 (4), p.1477-1487
issn 2161-5063
2161-5063
language eng
recordid cdi_proquest_miscellaneous_2641000871
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bacteriophages - genetics
Cloning, Molecular
DNA - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Genetic Vectors - genetics
Plasmids - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
title Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage%20Enzyme-Assisted%20Direct%20In%20Vivo%20DNA%20Assembly%20in%20Multiple%20Microorganisms&rft.jtitle=ACS%20synthetic%20biology&rft.au=Pang,%20Qingxiao&rft.date=2022-04-15&rft.volume=11&rft.issue=4&rft.spage=1477&rft.epage=1487&rft.pages=1477-1487&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.1c00529&rft_dat=%3Cproquest_cross%3E2641000871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a339t-bde27859dc3a69fe88b7ccc464135e463085710ceb9f1703d73d85956eb13ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641000871&rft_id=info:pmid/35298132&rfr_iscdi=true