Loading…

Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface

Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendrit...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2022-03, Vol.24 (13), p.7923-7936
Main Authors: Ding, Meng, Bing-Qian, Shan, Peng, Bo, Jia-Feng, Zhou, Zhang, Kun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7936
container_issue 13
container_start_page 7923
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Ding, Meng
Bing-Qian, Shan
Peng, Bo
Jia-Feng, Zhou
Zhang, Kun
description Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.
doi_str_mv 10.1039/d2cp00673a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641518038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645171907</sourcerecordid><originalsourceid>FETCH-LOGICAL-j318t-9c9876d770c904311df2e1d0204996091399e58de267d824b0edc97d160b26743</originalsourceid><addsrcrecordid>eNpdkD1OAzEQhVcIJEKg4QSWaGgW7LWzXpeIvyBFCgXUkWPPEkeOvdjeIh0lNdyBK9BzlJwERyAKqnkzevNp5hXFMcFnBFNxrivVYVxzKneKAWE1LQVu2O6f5vV-cRDjEmNMRoQOio-rtZMro9B92ry8T8eb17evz3E1zc3FE4odKAMRrUAbmQAp33cWNAILKgXvkHQadcGnLFOQLrYQUOsDUjJJu06Zu1jrYDSgALpXyWSjbxErncn73QKct0gmlBZbuGuNy3QnnY9KWkDGJQitVHBY7LXSRjj6rcPi8eb64XJcTqa3d5cXk3JJSZNKoUTDa805VgIzSohuKyAaV5gJUWNBqBAwajRUNddNxeYYtBJckxrP84jRYXH6w81PPfcQ02xlogJrpQPfx1lVs5xbg2mTrSf_rEvfB5ev27pGhJMcN_0G5EqAcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645171907</pqid></control><display><type>article</type><title>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</title><source>Royal Society of Chemistry</source><creator>Ding, Meng ; Bing-Qian, Shan ; Peng, Bo ; Jia-Feng, Zhou ; Zhang, Kun</creator><creatorcontrib>Ding, Meng ; Bing-Qian, Shan ; Peng, Bo ; Jia-Feng, Zhou ; Zhang, Kun</creatorcontrib><description>Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp00673a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aminophenol ; Atomic properties ; Bimetals ; Borohydrides ; Catalysts ; Coordination compounds ; Deuterons ; Excitation spectra ; Fourier transforms ; Heavy water ; Hydrides ; Infrared spectroscopy ; Metal surfaces ; Nanoparticles ; Nanospheres ; Nitrophenol ; NMR ; Nuclear magnetic resonance ; Photoelectrons ; Photoluminescence ; Platinum ; Protons ; Reducing agents ; Silver ; Spectrum analysis ; Water chemistry ; X ray photoelectron spectroscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-03, Vol.24 (13), p.7923-7936</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ding, Meng</creatorcontrib><creatorcontrib>Bing-Qian, Shan</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Jia-Feng, Zhou</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><title>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</title><title>Physical chemistry chemical physics : PCCP</title><description>Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.</description><subject>Aminophenol</subject><subject>Atomic properties</subject><subject>Bimetals</subject><subject>Borohydrides</subject><subject>Catalysts</subject><subject>Coordination compounds</subject><subject>Deuterons</subject><subject>Excitation spectra</subject><subject>Fourier transforms</subject><subject>Heavy water</subject><subject>Hydrides</subject><subject>Infrared spectroscopy</subject><subject>Metal surfaces</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nitrophenol</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Platinum</subject><subject>Protons</subject><subject>Reducing agents</subject><subject>Silver</subject><subject>Spectrum analysis</subject><subject>Water chemistry</subject><subject>X ray photoelectron spectroscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkD1OAzEQhVcIJEKg4QSWaGgW7LWzXpeIvyBFCgXUkWPPEkeOvdjeIh0lNdyBK9BzlJwERyAKqnkzevNp5hXFMcFnBFNxrivVYVxzKneKAWE1LQVu2O6f5vV-cRDjEmNMRoQOio-rtZMro9B92ry8T8eb17evz3E1zc3FE4odKAMRrUAbmQAp33cWNAILKgXvkHQadcGnLFOQLrYQUOsDUjJJu06Zu1jrYDSgALpXyWSjbxErncn73QKct0gmlBZbuGuNy3QnnY9KWkDGJQitVHBY7LXSRjj6rcPi8eb64XJcTqa3d5cXk3JJSZNKoUTDa805VgIzSohuKyAaV5gJUWNBqBAwajRUNddNxeYYtBJckxrP84jRYXH6w81PPfcQ02xlogJrpQPfx1lVs5xbg2mTrSf_rEvfB5ev27pGhJMcN_0G5EqAcA</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Ding, Meng</creator><creator>Bing-Qian, Shan</creator><creator>Peng, Bo</creator><creator>Jia-Feng, Zhou</creator><creator>Zhang, Kun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220330</creationdate><title>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</title><author>Ding, Meng ; Bing-Qian, Shan ; Peng, Bo ; Jia-Feng, Zhou ; Zhang, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j318t-9c9876d770c904311df2e1d0204996091399e58de267d824b0edc97d160b26743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aminophenol</topic><topic>Atomic properties</topic><topic>Bimetals</topic><topic>Borohydrides</topic><topic>Catalysts</topic><topic>Coordination compounds</topic><topic>Deuterons</topic><topic>Excitation spectra</topic><topic>Fourier transforms</topic><topic>Heavy water</topic><topic>Hydrides</topic><topic>Infrared spectroscopy</topic><topic>Metal surfaces</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nitrophenol</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Platinum</topic><topic>Protons</topic><topic>Reducing agents</topic><topic>Silver</topic><topic>Spectrum analysis</topic><topic>Water chemistry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Meng</creatorcontrib><creatorcontrib>Bing-Qian, Shan</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Jia-Feng, Zhou</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Meng</au><au>Bing-Qian, Shan</au><au>Peng, Bo</au><au>Jia-Feng, Zhou</au><au>Zhang, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>24</volume><issue>13</issue><spage>7923</spage><epage>7936</epage><pages>7923-7936</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp00673a</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-03, Vol.24 (13), p.7923-7936
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2641518038
source Royal Society of Chemistry
subjects Aminophenol
Atomic properties
Bimetals
Borohydrides
Catalysts
Coordination compounds
Deuterons
Excitation spectra
Fourier transforms
Heavy water
Hydrides
Infrared spectroscopy
Metal surfaces
Nanoparticles
Nanospheres
Nitrophenol
NMR
Nuclear magnetic resonance
Photoelectrons
Photoluminescence
Platinum
Protons
Reducing agents
Silver
Spectrum analysis
Water chemistry
X ray photoelectron spectroscopy
title Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Pt%E2%80%93OH%E2%88%92%C2%B7H2O%E2%80%93Ag%20species%20mediate%20coupled%20electron%20and%20proton%20transfer%20for%20catalytic%20hydride%20reduction%20of%204-nitrophenol%20at%20the%20confined%20nanoscale%20interface&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ding,%20Meng&rft.date=2022-03-30&rft.volume=24&rft.issue=13&rft.spage=7923&rft.epage=7936&rft.pages=7923-7936&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp00673a&rft_dat=%3Cproquest%3E2645171907%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j318t-9c9876d770c904311df2e1d0204996091399e58de267d824b0edc97d160b26743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645171907&rft_id=info:pmid/&rfr_iscdi=true