Loading…
Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface
Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendrit...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2022-03, Vol.24 (13), p.7923-7936 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7936 |
container_issue | 13 |
container_start_page | 7923 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Ding, Meng Bing-Qian, Shan Peng, Bo Jia-Feng, Zhou Zhang, Kun |
description | Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation. |
doi_str_mv | 10.1039/d2cp00673a |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641518038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645171907</sourcerecordid><originalsourceid>FETCH-LOGICAL-j318t-9c9876d770c904311df2e1d0204996091399e58de267d824b0edc97d160b26743</originalsourceid><addsrcrecordid>eNpdkD1OAzEQhVcIJEKg4QSWaGgW7LWzXpeIvyBFCgXUkWPPEkeOvdjeIh0lNdyBK9BzlJwERyAKqnkzevNp5hXFMcFnBFNxrivVYVxzKneKAWE1LQVu2O6f5vV-cRDjEmNMRoQOio-rtZMro9B92ry8T8eb17evz3E1zc3FE4odKAMRrUAbmQAp33cWNAILKgXvkHQadcGnLFOQLrYQUOsDUjJJu06Zu1jrYDSgALpXyWSjbxErncn73QKct0gmlBZbuGuNy3QnnY9KWkDGJQitVHBY7LXSRjj6rcPi8eb64XJcTqa3d5cXk3JJSZNKoUTDa805VgIzSohuKyAaV5gJUWNBqBAwajRUNddNxeYYtBJckxrP84jRYXH6w81PPfcQ02xlogJrpQPfx1lVs5xbg2mTrSf_rEvfB5ev27pGhJMcN_0G5EqAcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645171907</pqid></control><display><type>article</type><title>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</title><source>Royal Society of Chemistry</source><creator>Ding, Meng ; Bing-Qian, Shan ; Peng, Bo ; Jia-Feng, Zhou ; Zhang, Kun</creator><creatorcontrib>Ding, Meng ; Bing-Qian, Shan ; Peng, Bo ; Jia-Feng, Zhou ; Zhang, Kun</creatorcontrib><description>Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp00673a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aminophenol ; Atomic properties ; Bimetals ; Borohydrides ; Catalysts ; Coordination compounds ; Deuterons ; Excitation spectra ; Fourier transforms ; Heavy water ; Hydrides ; Infrared spectroscopy ; Metal surfaces ; Nanoparticles ; Nanospheres ; Nitrophenol ; NMR ; Nuclear magnetic resonance ; Photoelectrons ; Photoluminescence ; Platinum ; Protons ; Reducing agents ; Silver ; Spectrum analysis ; Water chemistry ; X ray photoelectron spectroscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-03, Vol.24 (13), p.7923-7936</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ding, Meng</creatorcontrib><creatorcontrib>Bing-Qian, Shan</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Jia-Feng, Zhou</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><title>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</title><title>Physical chemistry chemical physics : PCCP</title><description>Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.</description><subject>Aminophenol</subject><subject>Atomic properties</subject><subject>Bimetals</subject><subject>Borohydrides</subject><subject>Catalysts</subject><subject>Coordination compounds</subject><subject>Deuterons</subject><subject>Excitation spectra</subject><subject>Fourier transforms</subject><subject>Heavy water</subject><subject>Hydrides</subject><subject>Infrared spectroscopy</subject><subject>Metal surfaces</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nitrophenol</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Platinum</subject><subject>Protons</subject><subject>Reducing agents</subject><subject>Silver</subject><subject>Spectrum analysis</subject><subject>Water chemistry</subject><subject>X ray photoelectron spectroscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkD1OAzEQhVcIJEKg4QSWaGgW7LWzXpeIvyBFCgXUkWPPEkeOvdjeIh0lNdyBK9BzlJwERyAKqnkzevNp5hXFMcFnBFNxrivVYVxzKneKAWE1LQVu2O6f5vV-cRDjEmNMRoQOio-rtZMro9B92ry8T8eb17evz3E1zc3FE4odKAMRrUAbmQAp33cWNAILKgXvkHQadcGnLFOQLrYQUOsDUjJJu06Zu1jrYDSgALpXyWSjbxErncn73QKct0gmlBZbuGuNy3QnnY9KWkDGJQitVHBY7LXSRjj6rcPi8eb64XJcTqa3d5cXk3JJSZNKoUTDa805VgIzSohuKyAaV5gJUWNBqBAwajRUNddNxeYYtBJckxrP84jRYXH6w81PPfcQ02xlogJrpQPfx1lVs5xbg2mTrSf_rEvfB5ev27pGhJMcN_0G5EqAcA</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Ding, Meng</creator><creator>Bing-Qian, Shan</creator><creator>Peng, Bo</creator><creator>Jia-Feng, Zhou</creator><creator>Zhang, Kun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220330</creationdate><title>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</title><author>Ding, Meng ; Bing-Qian, Shan ; Peng, Bo ; Jia-Feng, Zhou ; Zhang, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j318t-9c9876d770c904311df2e1d0204996091399e58de267d824b0edc97d160b26743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aminophenol</topic><topic>Atomic properties</topic><topic>Bimetals</topic><topic>Borohydrides</topic><topic>Catalysts</topic><topic>Coordination compounds</topic><topic>Deuterons</topic><topic>Excitation spectra</topic><topic>Fourier transforms</topic><topic>Heavy water</topic><topic>Hydrides</topic><topic>Infrared spectroscopy</topic><topic>Metal surfaces</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nitrophenol</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Platinum</topic><topic>Protons</topic><topic>Reducing agents</topic><topic>Silver</topic><topic>Spectrum analysis</topic><topic>Water chemistry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Meng</creatorcontrib><creatorcontrib>Bing-Qian, Shan</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Jia-Feng, Zhou</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Meng</au><au>Bing-Qian, Shan</au><au>Peng, Bo</au><au>Jia-Feng, Zhou</au><au>Zhang, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>24</volume><issue>13</issue><spage>7923</spage><epage>7936</epage><pages>7923-7936</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir–Hinshelwood (L–H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt–Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L–H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag–Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp00673a</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-03, Vol.24 (13), p.7923-7936 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2641518038 |
source | Royal Society of Chemistry |
subjects | Aminophenol Atomic properties Bimetals Borohydrides Catalysts Coordination compounds Deuterons Excitation spectra Fourier transforms Heavy water Hydrides Infrared spectroscopy Metal surfaces Nanoparticles Nanospheres Nitrophenol NMR Nuclear magnetic resonance Photoelectrons Photoluminescence Platinum Protons Reducing agents Silver Spectrum analysis Water chemistry X ray photoelectron spectroscopy |
title | Dynamic Pt–OH−·H2O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Pt%E2%80%93OH%E2%88%92%C2%B7H2O%E2%80%93Ag%20species%20mediate%20coupled%20electron%20and%20proton%20transfer%20for%20catalytic%20hydride%20reduction%20of%204-nitrophenol%20at%20the%20confined%20nanoscale%20interface&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ding,%20Meng&rft.date=2022-03-30&rft.volume=24&rft.issue=13&rft.spage=7923&rft.epage=7936&rft.pages=7923-7936&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp00673a&rft_dat=%3Cproquest%3E2645171907%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j318t-9c9876d770c904311df2e1d0204996091399e58de267d824b0edc97d160b26743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645171907&rft_id=info:pmid/&rfr_iscdi=true |