Loading…
Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo
Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the addit...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-06, Vol.18 (22), p.e2200245-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3 |
container_end_page | n/a |
container_issue | 22 |
container_start_page | e2200245 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Anjong, Tikum Florence Choi, Honghwan Yoo, Jounghyun Bak, Yecheol Cho, Yuri Kim, Dojin Lee, Seokyung Lee, Kangwon Kim, Bong‐Gi Kim, Sehoon |
description | Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo. |
doi_str_mv | 10.1002/smll.202200245 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641863907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641863907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</originalsourceid><addsrcrecordid>eNqF0MtuGyEUBmBUJWou7bbLCimbbuxymwtLK2obq3aySNvtCMPBGouBFIZG3vUR8ox5kmA5daVssoAD0scv9CP0gZIpJYR9ToNzU0YYKxdRvUGntKZ8UrdMHh3OlJygs5Q2hHDKRPMWnfCK04pReYr0Mruxt9nrsQ_-8e_DlYoeUgKDZ3aEuHbhHl8rHxL4FCK2ZS2DA52ding-qHXv1zhYPNN5BPy9Nx62eO43Oe4G_tX_Ce_QsVUuwfvneY5-fv3y4_Jqsrj5Nr-cLSaaC16VHXgDgulWtnwlGDetUZKBgZVhdUOMsrKmrZCWMs0rMHVNQVohGrCtMsDP0ad97l0MvzOksRv6pME55SHk1LFa0LbmkjSFXrygm5CjL78rqmGsUCmKmu6VjiGlCLa7i_2g4rajpNvV3-3q7w71lwcfn2PzagBz4P_6LkDuwX3vYPtKXHe7XCz-hz8BedWS-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672226494</pqid></control><display><type>article</type><title>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Anjong, Tikum Florence ; Choi, Honghwan ; Yoo, Jounghyun ; Bak, Yecheol ; Cho, Yuri ; Kim, Dojin ; Lee, Seokyung ; Lee, Kangwon ; Kim, Bong‐Gi ; Kim, Sehoon</creator><creatorcontrib>Anjong, Tikum Florence ; Choi, Honghwan ; Yoo, Jounghyun ; Bak, Yecheol ; Cho, Yuri ; Kim, Dojin ; Lee, Seokyung ; Lee, Kangwon ; Kim, Bong‐Gi ; Kim, Sehoon</creatorcontrib><description>Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202200245</identifier><identifier>PMID: 35315219</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acute Kidney Injury - chemically induced ; Acute Kidney Injury - diagnostic imaging ; afterglow ; Animals ; Biomedical materials ; Cisplatin ; Imaging ; Injuries ; Iridium compounds ; Kidneys ; Luminescence ; Mice ; Molecular Imaging ; multifunctional iridium complexes ; Nanoparticles ; Nanosensors ; Nanotechnology ; Optical Imaging - methods ; Phosphorescence ; Singlet oxygen ; Substrates ; Superoxides ; superoxide‐activatable afterglow systems</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (22), p.e2200245-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</citedby><cites>FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</cites><orcidid>0000-0002-8074-1006 ; 0000-0001-5745-313X ; 0000-0001-7308-9438 ; 0000-0002-5647-1659 ; 0000-0003-1386-3705 ; 0000-0003-4253-2382 ; 0000-0003-1287-3661 ; 0000-0002-7985-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35315219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anjong, Tikum Florence</creatorcontrib><creatorcontrib>Choi, Honghwan</creatorcontrib><creatorcontrib>Yoo, Jounghyun</creatorcontrib><creatorcontrib>Bak, Yecheol</creatorcontrib><creatorcontrib>Cho, Yuri</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Seokyung</creatorcontrib><creatorcontrib>Lee, Kangwon</creatorcontrib><creatorcontrib>Kim, Bong‐Gi</creatorcontrib><creatorcontrib>Kim, Sehoon</creatorcontrib><title>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.</description><subject>Acute Kidney Injury - chemically induced</subject><subject>Acute Kidney Injury - diagnostic imaging</subject><subject>afterglow</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Cisplatin</subject><subject>Imaging</subject><subject>Injuries</subject><subject>Iridium compounds</subject><subject>Kidneys</subject><subject>Luminescence</subject><subject>Mice</subject><subject>Molecular Imaging</subject><subject>multifunctional iridium complexes</subject><subject>Nanoparticles</subject><subject>Nanosensors</subject><subject>Nanotechnology</subject><subject>Optical Imaging - methods</subject><subject>Phosphorescence</subject><subject>Singlet oxygen</subject><subject>Substrates</subject><subject>Superoxides</subject><subject>superoxide‐activatable afterglow systems</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0MtuGyEUBmBUJWou7bbLCimbbuxymwtLK2obq3aySNvtCMPBGouBFIZG3vUR8ox5kmA5daVssoAD0scv9CP0gZIpJYR9ToNzU0YYKxdRvUGntKZ8UrdMHh3OlJygs5Q2hHDKRPMWnfCK04pReYr0Mruxt9nrsQ_-8e_DlYoeUgKDZ3aEuHbhHl8rHxL4FCK2ZS2DA52ding-qHXv1zhYPNN5BPy9Nx62eO43Oe4G_tX_Ce_QsVUuwfvneY5-fv3y4_Jqsrj5Nr-cLSaaC16VHXgDgulWtnwlGDetUZKBgZVhdUOMsrKmrZCWMs0rMHVNQVohGrCtMsDP0ad97l0MvzOksRv6pME55SHk1LFa0LbmkjSFXrygm5CjL78rqmGsUCmKmu6VjiGlCLa7i_2g4rajpNvV3-3q7w71lwcfn2PzagBz4P_6LkDuwX3vYPtKXHe7XCz-hz8BedWS-g</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Anjong, Tikum Florence</creator><creator>Choi, Honghwan</creator><creator>Yoo, Jounghyun</creator><creator>Bak, Yecheol</creator><creator>Cho, Yuri</creator><creator>Kim, Dojin</creator><creator>Lee, Seokyung</creator><creator>Lee, Kangwon</creator><creator>Kim, Bong‐Gi</creator><creator>Kim, Sehoon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8074-1006</orcidid><orcidid>https://orcid.org/0000-0001-5745-313X</orcidid><orcidid>https://orcid.org/0000-0001-7308-9438</orcidid><orcidid>https://orcid.org/0000-0002-5647-1659</orcidid><orcidid>https://orcid.org/0000-0003-1386-3705</orcidid><orcidid>https://orcid.org/0000-0003-4253-2382</orcidid><orcidid>https://orcid.org/0000-0003-1287-3661</orcidid><orcidid>https://orcid.org/0000-0002-7985-0627</orcidid></search><sort><creationdate>20220601</creationdate><title>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</title><author>Anjong, Tikum Florence ; Choi, Honghwan ; Yoo, Jounghyun ; Bak, Yecheol ; Cho, Yuri ; Kim, Dojin ; Lee, Seokyung ; Lee, Kangwon ; Kim, Bong‐Gi ; Kim, Sehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute Kidney Injury - chemically induced</topic><topic>Acute Kidney Injury - diagnostic imaging</topic><topic>afterglow</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Cisplatin</topic><topic>Imaging</topic><topic>Injuries</topic><topic>Iridium compounds</topic><topic>Kidneys</topic><topic>Luminescence</topic><topic>Mice</topic><topic>Molecular Imaging</topic><topic>multifunctional iridium complexes</topic><topic>Nanoparticles</topic><topic>Nanosensors</topic><topic>Nanotechnology</topic><topic>Optical Imaging - methods</topic><topic>Phosphorescence</topic><topic>Singlet oxygen</topic><topic>Substrates</topic><topic>Superoxides</topic><topic>superoxide‐activatable afterglow systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anjong, Tikum Florence</creatorcontrib><creatorcontrib>Choi, Honghwan</creatorcontrib><creatorcontrib>Yoo, Jounghyun</creatorcontrib><creatorcontrib>Bak, Yecheol</creatorcontrib><creatorcontrib>Cho, Yuri</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Seokyung</creatorcontrib><creatorcontrib>Lee, Kangwon</creatorcontrib><creatorcontrib>Kim, Bong‐Gi</creatorcontrib><creatorcontrib>Kim, Sehoon</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anjong, Tikum Florence</au><au>Choi, Honghwan</au><au>Yoo, Jounghyun</au><au>Bak, Yecheol</au><au>Cho, Yuri</au><au>Kim, Dojin</au><au>Lee, Seokyung</au><au>Lee, Kangwon</au><au>Kim, Bong‐Gi</au><au>Kim, Sehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>22</issue><spage>e2200245</spage><epage>n/a</epage><pages>e2200245-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35315219</pmid><doi>10.1002/smll.202200245</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8074-1006</orcidid><orcidid>https://orcid.org/0000-0001-5745-313X</orcidid><orcidid>https://orcid.org/0000-0001-7308-9438</orcidid><orcidid>https://orcid.org/0000-0002-5647-1659</orcidid><orcidid>https://orcid.org/0000-0003-1386-3705</orcidid><orcidid>https://orcid.org/0000-0003-4253-2382</orcidid><orcidid>https://orcid.org/0000-0003-1287-3661</orcidid><orcidid>https://orcid.org/0000-0002-7985-0627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (22), p.e2200245-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2641863907 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acute Kidney Injury - chemically induced Acute Kidney Injury - diagnostic imaging afterglow Animals Biomedical materials Cisplatin Imaging Injuries Iridium compounds Kidneys Luminescence Mice Molecular Imaging multifunctional iridium complexes Nanoparticles Nanosensors Nanotechnology Optical Imaging - methods Phosphorescence Singlet oxygen Substrates Superoxides superoxide‐activatable afterglow systems |
title | Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunction%E2%80%90Harnessed%20Afterglow%20Nanosensor%20for%20Molecular%20Imaging%20of%20Acute%20Kidney%20Injury%20In%20Vivo&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Anjong,%20Tikum%20Florence&rft.date=2022-06-01&rft.volume=18&rft.issue=22&rft.spage=e2200245&rft.epage=n/a&rft.pages=e2200245-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202200245&rft_dat=%3Cproquest_cross%3E2641863907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672226494&rft_id=info:pmid/35315219&rfr_iscdi=true |