Loading…

Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo

Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the addit...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-06, Vol.18 (22), p.e2200245-n/a
Main Authors: Anjong, Tikum Florence, Choi, Honghwan, Yoo, Jounghyun, Bak, Yecheol, Cho, Yuri, Kim, Dojin, Lee, Seokyung, Lee, Kangwon, Kim, Bong‐Gi, Kim, Sehoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3
cites cdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3
container_end_page n/a
container_issue 22
container_start_page e2200245
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Anjong, Tikum Florence
Choi, Honghwan
Yoo, Jounghyun
Bak, Yecheol
Cho, Yuri
Kim, Dojin
Lee, Seokyung
Lee, Kangwon
Kim, Bong‐Gi
Kim, Sehoon
description Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background. An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.
doi_str_mv 10.1002/smll.202200245
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641863907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641863907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</originalsourceid><addsrcrecordid>eNqF0MtuGyEUBmBUJWou7bbLCimbbuxymwtLK2obq3aySNvtCMPBGouBFIZG3vUR8ox5kmA5daVssoAD0scv9CP0gZIpJYR9ToNzU0YYKxdRvUGntKZ8UrdMHh3OlJygs5Q2hHDKRPMWnfCK04pReYr0Mruxt9nrsQ_-8e_DlYoeUgKDZ3aEuHbhHl8rHxL4FCK2ZS2DA52ding-qHXv1zhYPNN5BPy9Nx62eO43Oe4G_tX_Ce_QsVUuwfvneY5-fv3y4_Jqsrj5Nr-cLSaaC16VHXgDgulWtnwlGDetUZKBgZVhdUOMsrKmrZCWMs0rMHVNQVohGrCtMsDP0ad97l0MvzOksRv6pME55SHk1LFa0LbmkjSFXrygm5CjL78rqmGsUCmKmu6VjiGlCLa7i_2g4rajpNvV3-3q7w71lwcfn2PzagBz4P_6LkDuwX3vYPtKXHe7XCz-hz8BedWS-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672226494</pqid></control><display><type>article</type><title>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Anjong, Tikum Florence ; Choi, Honghwan ; Yoo, Jounghyun ; Bak, Yecheol ; Cho, Yuri ; Kim, Dojin ; Lee, Seokyung ; Lee, Kangwon ; Kim, Bong‐Gi ; Kim, Sehoon</creator><creatorcontrib>Anjong, Tikum Florence ; Choi, Honghwan ; Yoo, Jounghyun ; Bak, Yecheol ; Cho, Yuri ; Kim, Dojin ; Lee, Seokyung ; Lee, Kangwon ; Kim, Bong‐Gi ; Kim, Sehoon</creatorcontrib><description>Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background. An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202200245</identifier><identifier>PMID: 35315219</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acute Kidney Injury - chemically induced ; Acute Kidney Injury - diagnostic imaging ; afterglow ; Animals ; Biomedical materials ; Cisplatin ; Imaging ; Injuries ; Iridium compounds ; Kidneys ; Luminescence ; Mice ; Molecular Imaging ; multifunctional iridium complexes ; Nanoparticles ; Nanosensors ; Nanotechnology ; Optical Imaging - methods ; Phosphorescence ; Singlet oxygen ; Substrates ; Superoxides ; superoxide‐activatable afterglow systems</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (22), p.e2200245-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</citedby><cites>FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</cites><orcidid>0000-0002-8074-1006 ; 0000-0001-5745-313X ; 0000-0001-7308-9438 ; 0000-0002-5647-1659 ; 0000-0003-1386-3705 ; 0000-0003-4253-2382 ; 0000-0003-1287-3661 ; 0000-0002-7985-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35315219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anjong, Tikum Florence</creatorcontrib><creatorcontrib>Choi, Honghwan</creatorcontrib><creatorcontrib>Yoo, Jounghyun</creatorcontrib><creatorcontrib>Bak, Yecheol</creatorcontrib><creatorcontrib>Cho, Yuri</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Seokyung</creatorcontrib><creatorcontrib>Lee, Kangwon</creatorcontrib><creatorcontrib>Kim, Bong‐Gi</creatorcontrib><creatorcontrib>Kim, Sehoon</creatorcontrib><title>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background. An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.</description><subject>Acute Kidney Injury - chemically induced</subject><subject>Acute Kidney Injury - diagnostic imaging</subject><subject>afterglow</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Cisplatin</subject><subject>Imaging</subject><subject>Injuries</subject><subject>Iridium compounds</subject><subject>Kidneys</subject><subject>Luminescence</subject><subject>Mice</subject><subject>Molecular Imaging</subject><subject>multifunctional iridium complexes</subject><subject>Nanoparticles</subject><subject>Nanosensors</subject><subject>Nanotechnology</subject><subject>Optical Imaging - methods</subject><subject>Phosphorescence</subject><subject>Singlet oxygen</subject><subject>Substrates</subject><subject>Superoxides</subject><subject>superoxide‐activatable afterglow systems</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0MtuGyEUBmBUJWou7bbLCimbbuxymwtLK2obq3aySNvtCMPBGouBFIZG3vUR8ox5kmA5daVssoAD0scv9CP0gZIpJYR9ToNzU0YYKxdRvUGntKZ8UrdMHh3OlJygs5Q2hHDKRPMWnfCK04pReYr0Mruxt9nrsQ_-8e_DlYoeUgKDZ3aEuHbhHl8rHxL4FCK2ZS2DA52ding-qHXv1zhYPNN5BPy9Nx62eO43Oe4G_tX_Ce_QsVUuwfvneY5-fv3y4_Jqsrj5Nr-cLSaaC16VHXgDgulWtnwlGDetUZKBgZVhdUOMsrKmrZCWMs0rMHVNQVohGrCtMsDP0ad97l0MvzOksRv6pME55SHk1LFa0LbmkjSFXrygm5CjL78rqmGsUCmKmu6VjiGlCLa7i_2g4rajpNvV3-3q7w71lwcfn2PzagBz4P_6LkDuwX3vYPtKXHe7XCz-hz8BedWS-g</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Anjong, Tikum Florence</creator><creator>Choi, Honghwan</creator><creator>Yoo, Jounghyun</creator><creator>Bak, Yecheol</creator><creator>Cho, Yuri</creator><creator>Kim, Dojin</creator><creator>Lee, Seokyung</creator><creator>Lee, Kangwon</creator><creator>Kim, Bong‐Gi</creator><creator>Kim, Sehoon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8074-1006</orcidid><orcidid>https://orcid.org/0000-0001-5745-313X</orcidid><orcidid>https://orcid.org/0000-0001-7308-9438</orcidid><orcidid>https://orcid.org/0000-0002-5647-1659</orcidid><orcidid>https://orcid.org/0000-0003-1386-3705</orcidid><orcidid>https://orcid.org/0000-0003-4253-2382</orcidid><orcidid>https://orcid.org/0000-0003-1287-3661</orcidid><orcidid>https://orcid.org/0000-0002-7985-0627</orcidid></search><sort><creationdate>20220601</creationdate><title>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</title><author>Anjong, Tikum Florence ; Choi, Honghwan ; Yoo, Jounghyun ; Bak, Yecheol ; Cho, Yuri ; Kim, Dojin ; Lee, Seokyung ; Lee, Kangwon ; Kim, Bong‐Gi ; Kim, Sehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute Kidney Injury - chemically induced</topic><topic>Acute Kidney Injury - diagnostic imaging</topic><topic>afterglow</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Cisplatin</topic><topic>Imaging</topic><topic>Injuries</topic><topic>Iridium compounds</topic><topic>Kidneys</topic><topic>Luminescence</topic><topic>Mice</topic><topic>Molecular Imaging</topic><topic>multifunctional iridium complexes</topic><topic>Nanoparticles</topic><topic>Nanosensors</topic><topic>Nanotechnology</topic><topic>Optical Imaging - methods</topic><topic>Phosphorescence</topic><topic>Singlet oxygen</topic><topic>Substrates</topic><topic>Superoxides</topic><topic>superoxide‐activatable afterglow systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anjong, Tikum Florence</creatorcontrib><creatorcontrib>Choi, Honghwan</creatorcontrib><creatorcontrib>Yoo, Jounghyun</creatorcontrib><creatorcontrib>Bak, Yecheol</creatorcontrib><creatorcontrib>Cho, Yuri</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Seokyung</creatorcontrib><creatorcontrib>Lee, Kangwon</creatorcontrib><creatorcontrib>Kim, Bong‐Gi</creatorcontrib><creatorcontrib>Kim, Sehoon</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anjong, Tikum Florence</au><au>Choi, Honghwan</au><au>Yoo, Jounghyun</au><au>Bak, Yecheol</au><au>Cho, Yuri</au><au>Kim, Dojin</au><au>Lee, Seokyung</au><au>Lee, Kangwon</au><au>Kim, Bong‐Gi</au><au>Kim, Sehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>22</issue><spage>e2200245</spage><epage>n/a</epage><pages>e2200245-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high‐contrast “off‐to‐on” activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components‐incorporated afterglow nanosensor (MANS) is developed for the superoxide‐responsive activatable afterglow imaging of cisplatin‐induced kidney injury. A multifunctional iridium complex (Ir‐OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen‐generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir‐OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir‐OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide‐responsive “off‐to‐on” activatable afterglow luminescence for periods longer than 11 min after the termination of pre‐excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin‐induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background. An activatable afterglow nanosensor formulated with two multifunctional components (MANS) is developed for the superoxide‐responsive afterglow imaging of cisplatin‐induced kidney injury in vivo. MANS enables activatable afterglow imaging of O2·− overproduced in the injured kidney tissue of an AKI mouse model by in situ pre‐excitation, demonstrating potential of the background‐free afterglow signal for diagnostic molecular imaging in vivo.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35315219</pmid><doi>10.1002/smll.202200245</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8074-1006</orcidid><orcidid>https://orcid.org/0000-0001-5745-313X</orcidid><orcidid>https://orcid.org/0000-0001-7308-9438</orcidid><orcidid>https://orcid.org/0000-0002-5647-1659</orcidid><orcidid>https://orcid.org/0000-0003-1386-3705</orcidid><orcidid>https://orcid.org/0000-0003-4253-2382</orcidid><orcidid>https://orcid.org/0000-0003-1287-3661</orcidid><orcidid>https://orcid.org/0000-0002-7985-0627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-06, Vol.18 (22), p.e2200245-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2641863907
source Wiley-Blackwell Read & Publish Collection
subjects Acute Kidney Injury - chemically induced
Acute Kidney Injury - diagnostic imaging
afterglow
Animals
Biomedical materials
Cisplatin
Imaging
Injuries
Iridium compounds
Kidneys
Luminescence
Mice
Molecular Imaging
multifunctional iridium complexes
Nanoparticles
Nanosensors
Nanotechnology
Optical Imaging - methods
Phosphorescence
Singlet oxygen
Substrates
Superoxides
superoxide‐activatable afterglow systems
title Multifunction‐Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunction%E2%80%90Harnessed%20Afterglow%20Nanosensor%20for%20Molecular%20Imaging%20of%20Acute%20Kidney%20Injury%20In%20Vivo&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Anjong,%20Tikum%20Florence&rft.date=2022-06-01&rft.volume=18&rft.issue=22&rft.spage=e2200245&rft.epage=n/a&rft.pages=e2200245-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202200245&rft_dat=%3Cproquest_cross%3E2641863907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3435-c3e37e42c8983b423d8da92edebd2670daf961849f12c35ed661e9f447ef8ade3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672226494&rft_id=info:pmid/35315219&rfr_iscdi=true