Loading…
A fast algorithm for optimum height-limited alphabetic binary trees
In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding proble...
Saved in:
Published in: | SIAM journal on computing 1994-12, Vol.23 (6), p.1283-1312 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3 |
container_end_page | 1312 |
container_issue | 6 |
container_start_page | 1283 |
container_title | SIAM journal on computing |
container_volume | 23 |
creator | LARMORE, L. L PRZYTYCKA, T. M |
description | In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness. |
doi_str_mv | 10.1137/s0097539792231167 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26421958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577126851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</originalsourceid><addsrcrecordid>eNpdkDtPAzEQhC0EEiHwA-hOCNEdeL32OS6jiJcUiQKoT46zl3N0j2D7Cv49FyWiSLXFfDOaHcZugT8CoH6KnBut0GgjBAIU-oxNgBuVawA4Z5O9nO_1S3YV45ZzkBJwwhbzrLIxZbbZ9MGnus2qPmT9Lvl2aLOa_KZOeeNbn2g9Qrvarih5l618Z8NvlgJRvGYXlW0i3RzvlH2_PH8t3vLlx-v7Yr7MHZoi5WQEKeJcWiWN4UIVBokIUVFlbGG5BikUKHSI1hotjbAKpRNrBZxXK5yyh0PuLvQ_A8VUtj46ahrbUT_EUhRSgFGzEbw7Abf9ELqxW2nAFELOdDFCcIBc6GMMVJW74NvxqRJ4ud-0_DzddPTcH4NtdLapgu2cj_9GRC0F5_gHnrF0Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919624876</pqid></control><display><type>article</type><title>A fast algorithm for optimum height-limited alphabetic binary trees</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>LARMORE, L. L ; PRZYTYCKA, T. M</creator><creatorcontrib>LARMORE, L. L ; PRZYTYCKA, T. M</creatorcontrib><description>In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/s0097539792231167</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Binary system ; Codes ; Computer science ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Leaves ; Memory organisation. Data processing ; Software</subject><ispartof>SIAM journal on computing, 1994-12, Vol.23 (6), p.1283-1312</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1994 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</citedby><cites>FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/919624876?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3374200$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LARMORE, L. L</creatorcontrib><creatorcontrib>PRZYTYCKA, T. M</creatorcontrib><title>A fast algorithm for optimum height-limited alphabetic binary trees</title><title>SIAM journal on computing</title><description>In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Binary system</subject><subject>Codes</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Leaves</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkDtPAzEQhC0EEiHwA-hOCNEdeL32OS6jiJcUiQKoT46zl3N0j2D7Cv49FyWiSLXFfDOaHcZugT8CoH6KnBut0GgjBAIU-oxNgBuVawA4Z5O9nO_1S3YV45ZzkBJwwhbzrLIxZbbZ9MGnus2qPmT9Lvl2aLOa_KZOeeNbn2g9Qrvarih5l618Z8NvlgJRvGYXlW0i3RzvlH2_PH8t3vLlx-v7Yr7MHZoi5WQEKeJcWiWN4UIVBokIUVFlbGG5BikUKHSI1hotjbAKpRNrBZxXK5yyh0PuLvQ_A8VUtj46ahrbUT_EUhRSgFGzEbw7Abf9ELqxW2nAFELOdDFCcIBc6GMMVJW74NvxqRJ4ud-0_DzddPTcH4NtdLapgu2cj_9GRC0F5_gHnrF0Kw</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>LARMORE, L. L</creator><creator>PRZYTYCKA, T. M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19941201</creationdate><title>A fast algorithm for optimum height-limited alphabetic binary trees</title><author>LARMORE, L. L ; PRZYTYCKA, T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Binary system</topic><topic>Codes</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Leaves</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LARMORE, L. L</creatorcontrib><creatorcontrib>PRZYTYCKA, T. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LARMORE, L. L</au><au>PRZYTYCKA, T. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast algorithm for optimum height-limited alphabetic binary trees</atitle><jtitle>SIAM journal on computing</jtitle><date>1994-12-01</date><risdate>1994</risdate><volume>23</volume><issue>6</issue><spage>1283</spage><epage>1312</epage><pages>1283-1312</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0097539792231167</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1994-12, Vol.23 (6), p.1283-1312 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_26421958 |
source | ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Applied sciences Binary system Codes Computer science Computer science control theory systems Data processing. List processing. Character string processing Exact sciences and technology Leaves Memory organisation. Data processing Software |
title | A fast algorithm for optimum height-limited alphabetic binary trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20algorithm%20for%20optimum%20height-limited%20alphabetic%20binary%20trees&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=LARMORE,%20L.%20L&rft.date=1994-12-01&rft.volume=23&rft.issue=6&rft.spage=1283&rft.epage=1312&rft.pages=1283-1312&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/s0097539792231167&rft_dat=%3Cproquest_cross%3E2577126851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919624876&rft_id=info:pmid/&rfr_iscdi=true |