Loading…

A fast algorithm for optimum height-limited alphabetic binary trees

In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding proble...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on computing 1994-12, Vol.23 (6), p.1283-1312
Main Authors: LARMORE, L. L, PRZYTYCKA, T. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3
cites cdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3
container_end_page 1312
container_issue 6
container_start_page 1283
container_title SIAM journal on computing
container_volume 23
creator LARMORE, L. L
PRZYTYCKA, T. M
description In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.
doi_str_mv 10.1137/s0097539792231167
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26421958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577126851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</originalsourceid><addsrcrecordid>eNpdkDtPAzEQhC0EEiHwA-hOCNEdeL32OS6jiJcUiQKoT46zl3N0j2D7Cv49FyWiSLXFfDOaHcZugT8CoH6KnBut0GgjBAIU-oxNgBuVawA4Z5O9nO_1S3YV45ZzkBJwwhbzrLIxZbbZ9MGnus2qPmT9Lvl2aLOa_KZOeeNbn2g9Qrvarih5l618Z8NvlgJRvGYXlW0i3RzvlH2_PH8t3vLlx-v7Yr7MHZoi5WQEKeJcWiWN4UIVBokIUVFlbGG5BikUKHSI1hotjbAKpRNrBZxXK5yyh0PuLvQ_A8VUtj46ahrbUT_EUhRSgFGzEbw7Abf9ELqxW2nAFELOdDFCcIBc6GMMVJW74NvxqRJ4ud-0_DzddPTcH4NtdLapgu2cj_9GRC0F5_gHnrF0Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919624876</pqid></control><display><type>article</type><title>A fast algorithm for optimum height-limited alphabetic binary trees</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>LARMORE, L. L ; PRZYTYCKA, T. M</creator><creatorcontrib>LARMORE, L. L ; PRZYTYCKA, T. M</creatorcontrib><description>In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/s0097539792231167</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Binary system ; Codes ; Computer science ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Leaves ; Memory organisation. Data processing ; Software</subject><ispartof>SIAM journal on computing, 1994-12, Vol.23 (6), p.1283-1312</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1994 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</citedby><cites>FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/919624876?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3374200$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LARMORE, L. L</creatorcontrib><creatorcontrib>PRZYTYCKA, T. M</creatorcontrib><title>A fast algorithm for optimum height-limited alphabetic binary trees</title><title>SIAM journal on computing</title><description>In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Binary system</subject><subject>Codes</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Leaves</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkDtPAzEQhC0EEiHwA-hOCNEdeL32OS6jiJcUiQKoT46zl3N0j2D7Cv49FyWiSLXFfDOaHcZugT8CoH6KnBut0GgjBAIU-oxNgBuVawA4Z5O9nO_1S3YV45ZzkBJwwhbzrLIxZbbZ9MGnus2qPmT9Lvl2aLOa_KZOeeNbn2g9Qrvarih5l618Z8NvlgJRvGYXlW0i3RzvlH2_PH8t3vLlx-v7Yr7MHZoi5WQEKeJcWiWN4UIVBokIUVFlbGG5BikUKHSI1hotjbAKpRNrBZxXK5yyh0PuLvQ_A8VUtj46ahrbUT_EUhRSgFGzEbw7Abf9ELqxW2nAFELOdDFCcIBc6GMMVJW74NvxqRJ4ud-0_DzddPTcH4NtdLapgu2cj_9GRC0F5_gHnrF0Kw</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>LARMORE, L. L</creator><creator>PRZYTYCKA, T. M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19941201</creationdate><title>A fast algorithm for optimum height-limited alphabetic binary trees</title><author>LARMORE, L. L ; PRZYTYCKA, T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Binary system</topic><topic>Codes</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Leaves</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LARMORE, L. L</creatorcontrib><creatorcontrib>PRZYTYCKA, T. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LARMORE, L. L</au><au>PRZYTYCKA, T. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast algorithm for optimum height-limited alphabetic binary trees</atitle><jtitle>SIAM journal on computing</jtitle><date>1994-12-01</date><risdate>1994</risdate><volume>23</volume><issue>6</issue><spage>1283</spage><epage>1312</epage><pages>1283-1312</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>In this paper, an $O(nL\log n)$-time algorithm is presented for construction of an optimal alphabetic binary tree with height restricted to $L$. This algorithm is an alphabetic version of the Package Merge algorithm, and yields an $O(nL\log n)$-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge algorithm is quite simple to describe, but appears hard to prove correct. Garey [SIAM J Comput., 3 (1974), pp. 101-110] gives an $O(n^3 \log n)$-time algorithm for the height-limited alphabetic binary tree problem. Itai [SIAM J. Comput., 5 (1976), pp. 9-18] and Wessner [Inform. Process. Lett., 4 (1976), pp. 90-94] independently reduce this time to $O(n^2 L)$ for the alphabetic problem. In [SIAM J. Comput., 16 (1987), pp. 1115-1123], a rather complex $O(n^{{3 / 2}} L\log ^{{1 / 2}} n)$ -time "hybrid" algorithm is given for length-limited Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS Dept. Univ. of California, Irvine, CA], but without proof of correctness.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0097539792231167</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1994-12, Vol.23 (6), p.1283-1312
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_miscellaneous_26421958
source ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Algorithms
Applied sciences
Binary system
Codes
Computer science
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Leaves
Memory organisation. Data processing
Software
title A fast algorithm for optimum height-limited alphabetic binary trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20algorithm%20for%20optimum%20height-limited%20alphabetic%20binary%20trees&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=LARMORE,%20L.%20L&rft.date=1994-12-01&rft.volume=23&rft.issue=6&rft.spage=1283&rft.epage=1312&rft.pages=1283-1312&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/s0097539792231167&rft_dat=%3Cproquest_cross%3E2577126851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-e92e5e004a5499025693eee335ef9a6a071425153c33aa97492a534c2d5100fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919624876&rft_id=info:pmid/&rfr_iscdi=true