Loading…
Task space exploration improves adaptation after incompatible virtual surgeries
Humans have a remarkable capacity to learn new motor skills, a process that requires novel muscle activity patterns. Muscle synergies may simplify the generation of muscle patterns through the selection of a small number of synergy combinations. Learning of new motor skills may then be achieved by a...
Saved in:
Published in: | Journal of neurophysiology 2022-04, Vol.127 (4), p.1127-1146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Humans have a remarkable capacity to learn new motor skills, a process that requires novel muscle activity patterns. Muscle synergies may simplify the generation of muscle patterns through the selection of a small number of synergy combinations. Learning of new motor skills may then be achieved by acquiring novel muscle synergies. In a previous study, we used myoelectric control to construct virtual surgeries that altered the mapping from muscle activity to cursor movements. After compatible virtual surgeries, which could be compensated by recombining subject-specific muscle synergies, participants adapted quickly. In contrast, after incompatible virtual surgeries, which could not be compensated by recombining existing synergies, participants explored new muscle patterns but failed to adapt. Here, we tested whether task space exploration can promote learning of novel muscle synergies required to overcome an incompatible surgery. Participants performed the same reaching task as in our previous study but with more time to complete each trial, thus allowing for exploration. We found an improvement in trial success after incompatible virtual surgeries. Remarkably, improvements in movement direction accuracy after incompatible surgeries occurred faster for corrective movements than for the initial movement, suggesting that learning of new synergies is more effective when used for feedback control. Moreover, reaction time was significantly higher after incompatible than compatible virtual surgeries, suggesting an increased use of an explicit adaptive strategy to overcome incompatible surgeries. Taken together, these results indicate that exploration is important for skill learning and suggest that human participants, with sufficient time, can learn new muscle synergies.
Motor skill learning requires the acquisition of novel muscle patterns, a slow adaptive process. Here we show that learning to control a cursor after an incompatible virtual surgery, a complex skill requiring new muscle synergies, is possible when enough time for task space exploration is provided. Our results suggest that learning new synergies is related to the exceptional human capacity to acquire a wide variety of novel motor skills with practice. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00356.2021 |