Loading…
Early Changes of Hamstrings Morphology and Contractile Properties during 10 d of Complete Inactivity
PURPOSEThe hamstrings (HS) muscle group plays a fundamental role in maintaining knee stability, thus contributing to the prevention and rehabilitation of lower limb musculoskeletal injuries. However, little is known about HS structural and functional adaptations after periods of prolonged inactivity...
Saved in:
Published in: | Medicine and science in sports and exercise 2022-08, Vol.54 (8), p.1346-1354 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PURPOSEThe hamstrings (HS) muscle group plays a fundamental role in maintaining knee stability, thus contributing to the prevention and rehabilitation of lower limb musculoskeletal injuries. However, little is known about HS structural and functional adaptations after periods of prolonged inactivity. Our purpose was to investigate the HS morphological and contractile properties changes during 10 d of bed rest (BR). METHODSTen young healthy males underwent a 10-d BR. HS cross-sectional area (CSA) (at 30%, 50%, and 70% of femur length) and biceps femoris long head (BFlh) architecture were assessed by ultrasound imaging after 0 d (BR0), 2 d (BR2), 4 d (BR4), 6 d (BR6), and 10 d (BR10) of BR, whereas BFlh contractile properties (radial twitch displacement [Dm] and contraction time [Tc]) were evaluated at the same time points by tensiomyography. HS muscle volume was assessed by magnetic resonance imaging at BR0 and BR10. RESULTSA reduction in muscle volume was observed in BFlh ( P = 0.002; Δ = -3.53%), biceps femoris short head ( P = 0.002; Δ = -3.54%), semitendinosus ( P = 0.002; Δ = -2.63%), semimembranosus ( P = 0.002; Δ = -2.01%), and HS pooled together ( P < 0.001; Δ = -2.78%). Early changes in CSA were detected at 30% femur length already at BR6 for BFlh ( P = 0.009; Δ = -2.66%) and biceps femoris short head ( P = 0.049; Δ = -1.96%). We also found a reduction in fascicle length at BR6 ( P = 0.035; Δ = -2.44%) and BR10 ( P < 0.001; Δ = -2.84%). Dm and Tc increased at BR2 ( P = 0.010; Δ = 30.0%) and B10 ( P = 0.019; Δ = 19.7%), respectively. CONCLUSIONSDespite being a nonpostural muscle group, HS exhibited a moderate reduction in muscle dimensions in response to a short unloading period. Small changes in BFlh fascicle length were also observed, accompanied by alterations in BFLh contractile properties. These HS modifications should not be ignored from a clinical perspective. |
---|---|
ISSN: | 0195-9131 1530-0315 |
DOI: | 10.1249/MSS.0000000000002922 |