Loading…

Biomechanical behaviour of implant prostheses and adjacent teeth according to bone quality: A finite element analysis

The contribution of biomechanical factors in the formation of proximal contact loss has been observed, but there is little research on the mechanisms by which they contribute. Using finite element analysis, this study aimed to analyse the impact of bone quality on the biomechanical behaviour of a de...

Full description

Saved in:
Bibliographic Details
Published in:European journal of oral sciences 2022-06, Vol.130 (3), p.e12863-n/a
Main Authors: Wang, Lan, Fu, Zhi‐Hui, Hu, Zhi‐Hui, Li, Min, Qiu, Li‐Hua, Gao, Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The contribution of biomechanical factors in the formation of proximal contact loss has been observed, but there is little research on the mechanisms by which they contribute. Using finite element analysis, this study aimed to analyse the impact of bone quality on the biomechanical behaviour of a dentition consisting of implant prostheses and adjacent teeth. The occlusal load was applied on the implant/tooth crown. In the mesiodistal direction, the adjacent natural tooth mesially to the implant denture had the tendency for mesial movement, while the distal adjacent natural tooth had the tendency for distal movement. For the supporting bone around the mesial adjacent tooth, the maximum/minimum principal stress and strain values on the mesial side of the bone were higher than those on the distal side of the bone. Stress and strain values on the mesial side of the supporting bone around the distal adjacent tooth were lower than those on the distal side. With decreasing bone density, displacements of teeth and the implant denture, principal stresses and equivalent strains on tooth supporting bone increased. Studies on biomechanical behaviours of a tooth‐implant dentition may provide a deeper understanding of implant‐induced dental adaptive processes such as proximal contact loss.
ISSN:0909-8836
1600-0722
DOI:10.1111/eos.12863