Loading…
Identification of benzothiazole‐rhodanine derivatives as α‐amylase and α‐glucosidase inhibitors: Design, synthesis, in silico, and in vitro analysis
A novel series of benzothiazole‐rhodanine derivatives (A1‐A10) were designed and synthesized, with the aim of developing possible antidiabetic agents and the spectral characterization of these compounds was done using infrared spectroscopy (IR), proton‐nuclear magnetic resonance (1H‐NMR), carbon‐nuc...
Saved in:
Published in: | Journal of molecular recognition 2022-08, Vol.35 (8), p.e2959-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723 |
---|---|
cites | cdi_FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | e2959 |
container_title | Journal of molecular recognition |
container_volume | 35 |
creator | Srinivasa, Mahendra Gowdru Aggarwal, Natasha Naval Gatpoh, Banylla Felicity Dkhar Shankar, Madan Kumar Byadarahalli Ravindranath, Kannika Gurubasavaraj Veeranna, Pujar Dixit, Sheshagiri Mandal, Subhankar P. Bommenahally Ravanappa, Prashantha Kumar Khanal, Pukar Bistuvalli Chandrashekarappa, Revanasiddappa |
description | A novel series of benzothiazole‐rhodanine derivatives (A1‐A10) were designed and synthesized, with the aim of developing possible antidiabetic agents and the spectral characterization of these compounds was done using infrared spectroscopy (IR), proton‐nuclear magnetic resonance (1H‐NMR), carbon‐nuclear magnetic resonance (C13‐NMR), and high resolution mass spectroscopy (HR‐MS) techniques. In vitro hypoglycemic potential of the compounds was evaluated by performing α‐amylase and α‐glucosidase enzyme inhibitory assays. In addition, these compounds were subjected to in silico analysis. Based on the results, compounds A5, A6, and A9 displayed good activity in comparison with the standard acarbose. Based on Lineweaver‐Burk plots, it was concluded that compounds A5 and A9 displayed competitive type of enzyme inhibition. Molecular dynamic simulations were conducted to evaluate the stability of the ligand‐protein complex by the calculation of the root mean square deviation, root means square fluctuation, and solvent accessible surface area.
Graphical illustration that synthesis and characterization benzothiazole‐rhodanine derivatives. |
doi_str_mv | 10.1002/jmr.2959 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2644937088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685236933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723</originalsourceid><addsrcrecordid>eNp1kU9u1DAYxS0EotOCxAmQJTYsJq1jx56YXVX-tSpCQrCOHPtLxyPHLnYyKF31CBygl-hFOAQnwekUkJBY2d97Pz991kPoWUkOS0Lo0aaPh1Ry-QAtSiJlUTJOH6IFkZwWrJJyD-2ntCEke5w8RnuMZ7WUfIFuTg34wXZWq8EGj0OHW_BXYVhbdRUc_Lz-HtfBKG89YAPRbjO3hYRVwj9us6v6yakEWHmzEy7cqEOyZhatX9vWDiGmV_g1JHvhlzhNfljne1pmGyfrrA7Lu-d53NohhjwoN2XiCXrUKZfg6f15gL68ffP55H1x_vHd6cnxeaHnzxWUVKblcmXqloDiYkUIMCqErEkniS6FqLSslDYUBKialKAroQ2XjFUdrCg7QC93uZcxfB0hDU1vkwbnlIcwpoaKqpJsReo6oy_-QTdhjHnfmao5ZSKn_g3UMaQUoWsuo-1VnJqSNHNjTW6smRvL6PP7wLHtwfwBf1eUgWIHfLMOpv8GNWcfPt0F_gKlfKYa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685236933</pqid></control><display><type>article</type><title>Identification of benzothiazole‐rhodanine derivatives as α‐amylase and α‐glucosidase inhibitors: Design, synthesis, in silico, and in vitro analysis</title><source>Wiley</source><creator>Srinivasa, Mahendra Gowdru ; Aggarwal, Natasha Naval ; Gatpoh, Banylla Felicity Dkhar ; Shankar, Madan Kumar ; Byadarahalli Ravindranath, Kannika ; Gurubasavaraj Veeranna, Pujar ; Dixit, Sheshagiri ; Mandal, Subhankar P. ; Bommenahally Ravanappa, Prashantha Kumar ; Khanal, Pukar ; Bistuvalli Chandrashekarappa, Revanasiddappa</creator><creatorcontrib>Srinivasa, Mahendra Gowdru ; Aggarwal, Natasha Naval ; Gatpoh, Banylla Felicity Dkhar ; Shankar, Madan Kumar ; Byadarahalli Ravindranath, Kannika ; Gurubasavaraj Veeranna, Pujar ; Dixit, Sheshagiri ; Mandal, Subhankar P. ; Bommenahally Ravanappa, Prashantha Kumar ; Khanal, Pukar ; Bistuvalli Chandrashekarappa, Revanasiddappa</creatorcontrib><description>A novel series of benzothiazole‐rhodanine derivatives (A1‐A10) were designed and synthesized, with the aim of developing possible antidiabetic agents and the spectral characterization of these compounds was done using infrared spectroscopy (IR), proton‐nuclear magnetic resonance (1H‐NMR), carbon‐nuclear magnetic resonance (C13‐NMR), and high resolution mass spectroscopy (HR‐MS) techniques. In vitro hypoglycemic potential of the compounds was evaluated by performing α‐amylase and α‐glucosidase enzyme inhibitory assays. In addition, these compounds were subjected to in silico analysis. Based on the results, compounds A5, A6, and A9 displayed good activity in comparison with the standard acarbose. Based on Lineweaver‐Burk plots, it was concluded that compounds A5 and A9 displayed competitive type of enzyme inhibition. Molecular dynamic simulations were conducted to evaluate the stability of the ligand‐protein complex by the calculation of the root mean square deviation, root means square fluctuation, and solvent accessible surface area.
Graphical illustration that synthesis and characterization benzothiazole‐rhodanine derivatives.</description><identifier>ISSN: 0952-3499</identifier><identifier>EISSN: 1099-1352</identifier><identifier>DOI: 10.1002/jmr.2959</identifier><identifier>PMID: 35349195</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acarbose ; Amylases ; Benzothiazole ; Diabetes mellitus ; Dynamic stability ; Glucosidase ; in silico analysis ; Infrared spectroscopy ; Mass spectroscopy ; Molecular dynamics ; NMR ; Nuclear magnetic resonance ; pharmacophore ; Resonance ; rhodanines ; Stability analysis ; α-Amylase</subject><ispartof>Journal of molecular recognition, 2022-08, Vol.35 (8), p.e2959-n/a</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723</citedby><cites>FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723</cites><orcidid>0000-0002-5458-2451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35349195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasa, Mahendra Gowdru</creatorcontrib><creatorcontrib>Aggarwal, Natasha Naval</creatorcontrib><creatorcontrib>Gatpoh, Banylla Felicity Dkhar</creatorcontrib><creatorcontrib>Shankar, Madan Kumar</creatorcontrib><creatorcontrib>Byadarahalli Ravindranath, Kannika</creatorcontrib><creatorcontrib>Gurubasavaraj Veeranna, Pujar</creatorcontrib><creatorcontrib>Dixit, Sheshagiri</creatorcontrib><creatorcontrib>Mandal, Subhankar P.</creatorcontrib><creatorcontrib>Bommenahally Ravanappa, Prashantha Kumar</creatorcontrib><creatorcontrib>Khanal, Pukar</creatorcontrib><creatorcontrib>Bistuvalli Chandrashekarappa, Revanasiddappa</creatorcontrib><title>Identification of benzothiazole‐rhodanine derivatives as α‐amylase and α‐glucosidase inhibitors: Design, synthesis, in silico, and in vitro analysis</title><title>Journal of molecular recognition</title><addtitle>J Mol Recognit</addtitle><description>A novel series of benzothiazole‐rhodanine derivatives (A1‐A10) were designed and synthesized, with the aim of developing possible antidiabetic agents and the spectral characterization of these compounds was done using infrared spectroscopy (IR), proton‐nuclear magnetic resonance (1H‐NMR), carbon‐nuclear magnetic resonance (C13‐NMR), and high resolution mass spectroscopy (HR‐MS) techniques. In vitro hypoglycemic potential of the compounds was evaluated by performing α‐amylase and α‐glucosidase enzyme inhibitory assays. In addition, these compounds were subjected to in silico analysis. Based on the results, compounds A5, A6, and A9 displayed good activity in comparison with the standard acarbose. Based on Lineweaver‐Burk plots, it was concluded that compounds A5 and A9 displayed competitive type of enzyme inhibition. Molecular dynamic simulations were conducted to evaluate the stability of the ligand‐protein complex by the calculation of the root mean square deviation, root means square fluctuation, and solvent accessible surface area.
Graphical illustration that synthesis and characterization benzothiazole‐rhodanine derivatives.</description><subject>Acarbose</subject><subject>Amylases</subject><subject>Benzothiazole</subject><subject>Diabetes mellitus</subject><subject>Dynamic stability</subject><subject>Glucosidase</subject><subject>in silico analysis</subject><subject>Infrared spectroscopy</subject><subject>Mass spectroscopy</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>pharmacophore</subject><subject>Resonance</subject><subject>rhodanines</subject><subject>Stability analysis</subject><subject>α-Amylase</subject><issn>0952-3499</issn><issn>1099-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU9u1DAYxS0EotOCxAmQJTYsJq1jx56YXVX-tSpCQrCOHPtLxyPHLnYyKF31CBygl-hFOAQnwekUkJBY2d97Pz991kPoWUkOS0Lo0aaPh1Ry-QAtSiJlUTJOH6IFkZwWrJJyD-2ntCEke5w8RnuMZ7WUfIFuTg34wXZWq8EGj0OHW_BXYVhbdRUc_Lz-HtfBKG89YAPRbjO3hYRVwj9us6v6yakEWHmzEy7cqEOyZhatX9vWDiGmV_g1JHvhlzhNfljne1pmGyfrrA7Lu-d53NohhjwoN2XiCXrUKZfg6f15gL68ffP55H1x_vHd6cnxeaHnzxWUVKblcmXqloDiYkUIMCqErEkniS6FqLSslDYUBKialKAroQ2XjFUdrCg7QC93uZcxfB0hDU1vkwbnlIcwpoaKqpJsReo6oy_-QTdhjHnfmao5ZSKn_g3UMaQUoWsuo-1VnJqSNHNjTW6smRvL6PP7wLHtwfwBf1eUgWIHfLMOpv8GNWcfPt0F_gKlfKYa</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Srinivasa, Mahendra Gowdru</creator><creator>Aggarwal, Natasha Naval</creator><creator>Gatpoh, Banylla Felicity Dkhar</creator><creator>Shankar, Madan Kumar</creator><creator>Byadarahalli Ravindranath, Kannika</creator><creator>Gurubasavaraj Veeranna, Pujar</creator><creator>Dixit, Sheshagiri</creator><creator>Mandal, Subhankar P.</creator><creator>Bommenahally Ravanappa, Prashantha Kumar</creator><creator>Khanal, Pukar</creator><creator>Bistuvalli Chandrashekarappa, Revanasiddappa</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7TA</scope><scope>7TK</scope><scope>7TM</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5458-2451</orcidid></search><sort><creationdate>202208</creationdate><title>Identification of benzothiazole‐rhodanine derivatives as α‐amylase and α‐glucosidase inhibitors: Design, synthesis, in silico, and in vitro analysis</title><author>Srinivasa, Mahendra Gowdru ; Aggarwal, Natasha Naval ; Gatpoh, Banylla Felicity Dkhar ; Shankar, Madan Kumar ; Byadarahalli Ravindranath, Kannika ; Gurubasavaraj Veeranna, Pujar ; Dixit, Sheshagiri ; Mandal, Subhankar P. ; Bommenahally Ravanappa, Prashantha Kumar ; Khanal, Pukar ; Bistuvalli Chandrashekarappa, Revanasiddappa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acarbose</topic><topic>Amylases</topic><topic>Benzothiazole</topic><topic>Diabetes mellitus</topic><topic>Dynamic stability</topic><topic>Glucosidase</topic><topic>in silico analysis</topic><topic>Infrared spectroscopy</topic><topic>Mass spectroscopy</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>pharmacophore</topic><topic>Resonance</topic><topic>rhodanines</topic><topic>Stability analysis</topic><topic>α-Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasa, Mahendra Gowdru</creatorcontrib><creatorcontrib>Aggarwal, Natasha Naval</creatorcontrib><creatorcontrib>Gatpoh, Banylla Felicity Dkhar</creatorcontrib><creatorcontrib>Shankar, Madan Kumar</creatorcontrib><creatorcontrib>Byadarahalli Ravindranath, Kannika</creatorcontrib><creatorcontrib>Gurubasavaraj Veeranna, Pujar</creatorcontrib><creatorcontrib>Dixit, Sheshagiri</creatorcontrib><creatorcontrib>Mandal, Subhankar P.</creatorcontrib><creatorcontrib>Bommenahally Ravanappa, Prashantha Kumar</creatorcontrib><creatorcontrib>Khanal, Pukar</creatorcontrib><creatorcontrib>Bistuvalli Chandrashekarappa, Revanasiddappa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasa, Mahendra Gowdru</au><au>Aggarwal, Natasha Naval</au><au>Gatpoh, Banylla Felicity Dkhar</au><au>Shankar, Madan Kumar</au><au>Byadarahalli Ravindranath, Kannika</au><au>Gurubasavaraj Veeranna, Pujar</au><au>Dixit, Sheshagiri</au><au>Mandal, Subhankar P.</au><au>Bommenahally Ravanappa, Prashantha Kumar</au><au>Khanal, Pukar</au><au>Bistuvalli Chandrashekarappa, Revanasiddappa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of benzothiazole‐rhodanine derivatives as α‐amylase and α‐glucosidase inhibitors: Design, synthesis, in silico, and in vitro analysis</atitle><jtitle>Journal of molecular recognition</jtitle><addtitle>J Mol Recognit</addtitle><date>2022-08</date><risdate>2022</risdate><volume>35</volume><issue>8</issue><spage>e2959</spage><epage>n/a</epage><pages>e2959-n/a</pages><issn>0952-3499</issn><eissn>1099-1352</eissn><abstract>A novel series of benzothiazole‐rhodanine derivatives (A1‐A10) were designed and synthesized, with the aim of developing possible antidiabetic agents and the spectral characterization of these compounds was done using infrared spectroscopy (IR), proton‐nuclear magnetic resonance (1H‐NMR), carbon‐nuclear magnetic resonance (C13‐NMR), and high resolution mass spectroscopy (HR‐MS) techniques. In vitro hypoglycemic potential of the compounds was evaluated by performing α‐amylase and α‐glucosidase enzyme inhibitory assays. In addition, these compounds were subjected to in silico analysis. Based on the results, compounds A5, A6, and A9 displayed good activity in comparison with the standard acarbose. Based on Lineweaver‐Burk plots, it was concluded that compounds A5 and A9 displayed competitive type of enzyme inhibition. Molecular dynamic simulations were conducted to evaluate the stability of the ligand‐protein complex by the calculation of the root mean square deviation, root means square fluctuation, and solvent accessible surface area.
Graphical illustration that synthesis and characterization benzothiazole‐rhodanine derivatives.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35349195</pmid><doi>10.1002/jmr.2959</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5458-2451</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-3499 |
ispartof | Journal of molecular recognition, 2022-08, Vol.35 (8), p.e2959-n/a |
issn | 0952-3499 1099-1352 |
language | eng |
recordid | cdi_proquest_miscellaneous_2644937088 |
source | Wiley |
subjects | Acarbose Amylases Benzothiazole Diabetes mellitus Dynamic stability Glucosidase in silico analysis Infrared spectroscopy Mass spectroscopy Molecular dynamics NMR Nuclear magnetic resonance pharmacophore Resonance rhodanines Stability analysis α-Amylase |
title | Identification of benzothiazole‐rhodanine derivatives as α‐amylase and α‐glucosidase inhibitors: Design, synthesis, in silico, and in vitro analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20benzothiazole%E2%80%90rhodanine%20derivatives%20as%20%CE%B1%E2%80%90amylase%20and%20%CE%B1%E2%80%90glucosidase%20inhibitors:%20Design,%20synthesis,%20in%20silico,%20and%20in%20vitro%20analysis&rft.jtitle=Journal%20of%20molecular%20recognition&rft.au=Srinivasa,%20Mahendra%20Gowdru&rft.date=2022-08&rft.volume=35&rft.issue=8&rft.spage=e2959&rft.epage=n/a&rft.pages=e2959-n/a&rft.issn=0952-3499&rft.eissn=1099-1352&rft_id=info:doi/10.1002/jmr.2959&rft_dat=%3Cproquest_cross%3E2685236933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3499-204db597d8b0ea56700e3266980f90c1664c94acd2e6ea801ec46cd59334fe723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685236933&rft_id=info:pmid/35349195&rfr_iscdi=true |