Loading…
Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles
High internal phase emulsions (HIPEs) stabilized by debranched starch-capric acid (DBS-CA) complex nanoparticles were fabricated and their performance was evaluated. DBS-CA was prepared through enzymatic debranching and solid encapsulation methods, and displayed V-type crystalline structure. Contact...
Saved in:
Published in: | International journal of biological macromolecules 2022-05, Vol.207, p.791-800 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High internal phase emulsions (HIPEs) stabilized by debranched starch-capric acid (DBS-CA) complex nanoparticles were fabricated and their performance was evaluated. DBS-CA was prepared through enzymatic debranching and solid encapsulation methods, and displayed V-type crystalline structure. Contact angle measurements show enhanced hydrophobicity of DBS-CA compared to native starch. The DBS-CA nanoparticles have an average size of 463.77 nm and tended to be aggregating as analyzed by scanning electron microscope and dynamic light scattering particle size analysis. When used as a particulate emulsifier, DBS-CA could stabilize HIPEs with oil volume fraction as high as 80%. The HIPEs showed pH-dependent properties; good storage stability and mechanical strength were achieved within pH range from 3 to 11, especially under alkaline conditions. It was proposed that smaller particle size and higher surface charging were responsible for the more tightly connected gel structure and thus their performance. This study demonstrates a novel approach to fabricate food-grade Pickering HIPEs, which may have many promising potential applications in the food industry. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.03.142 |