Loading…

Seaweed-associated heterotrophic bacteria: are they future novel sources of antimicrobial agents against drug-resistant pathogens?

Emergence of multidrug-resistant microorganisms and requirements for novel antimicrobial compounds necessitate exploring newer habitats to develop potential bioactive leads. Culture-contingent analysis of heterotrophic bacterial flora from the seaweeds led to the isolation of bioactive strains posse...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 2022-04, Vol.204 (4), p.232-232, Article 232
Main Authors: Asharaf, Sumayya, Chakraborty, Kajal, Chakraborty, Rekha Devi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Emergence of multidrug-resistant microorganisms and requirements for novel antimicrobial compounds necessitate exploring newer habitats to develop potential bioactive leads. Culture-contingent analysis of heterotrophic bacterial flora from the seaweeds led to the isolation of bioactive strains possessing potential antibacterial properties against wide-ranging clinical pathogens viz., methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE fs ). Seven of the most active strains belonging to the phylum Firmicutes isolated from a brown seaweed (Phaeophyceae) Sargassum wightii exhibited spot-over-lawn assay guided inhibition zone of larger than 30 mm. Integrated phenotypic and genotypic studies have led to the characterization of the seaweed-associated bacteria particularly belonging to the phylum Firmicutes. The organic extracts of the studied bacteria exhibited promising antibacterial properties against MRSA and VRE fs with minimum inhibitory concentration ranging between 6.25 and 12.50 μg/mL. Time-kill kinetic profiles of those bacteria displayed rapid bactericidal activity against both E. coli and MRSA, showing a  ≥ 3log 10 reduction in viable cell count than the initial. Among the studied bioactive Bacillus spp, B. tequilensis MTCC13043 and B. altiitudinis MTCC13046 were found to possess functional polyketide synthase ( pks ) gene (MW027664 and MW027660) that could be amplified. The outcome of amplified genes encrypting for polyketide synthase in conjunction with antibacterial activities unveiled the broad-spectrum antimicrobial activities of the marine heterotrophic Firmicutes , which could be further used against the emergent problem of antibiotic-resistant bacterial pathogens.
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-022-02835-8