Loading…
Decoherence-Induced Exceptional Points in a Dissipative Superconducting Qubit
Open quantum systems interacting with an environment exhibit dynamics described by the combination of dissipation and coherent Hamiltonian evolution. Taken together, these effects are captured by a Liouvillian superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are excepti...
Saved in:
Published in: | Physical review letters 2022-03, Vol.128 (11), p.110402-110402, Article 110402 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Open quantum systems interacting with an environment exhibit dynamics described by the combination of dissipation and coherent Hamiltonian evolution. Taken together, these effects are captured by a Liouvillian superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are exceptional points, which are associated with critical dynamics as the system approaches steady state. We use a superconducting transmon circuit coupled to an engineered environment to observe two different types of Liouvillian exceptional points that arise either from the interplay of energy loss and decoherence or purely due to decoherence. By dynamically tuning the Liouvillian superoperators in real time we observe a non-Hermiticity-induced chiral state transfer. Our study motivates a new look at open quantum system dynamics from the vantage of Liouvillian exceptional points, enabling applications of non-Hermitian dynamics in the understanding and control of open quantum systems. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.128.110402 |