Loading…
A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale
Key message A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for orna...
Saved in:
Published in: | Theoretical and applied genetics 2022-06, Vol.135 (6), p.1855-1865 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083 |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083 |
container_end_page | 1865 |
container_issue | 6 |
container_start_page | 1855 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Zhang, Yuting Feng, Xin Liu, Yang Zhou, Fuhui Zhu, Pengfang |
description | Key message
A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant.
Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes
BoDFR1
(
Bo9g058630
) and its ortholog
BoDFR2
(
Bo2g116380
) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced
BoDFR1
and
BoDFR2
from both types of kale
.
We identified a 1-bp insertion in
BoDFR1
and a 2-bp insertion in
BoDFR2
in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out
BoDFR1
or
BoDFR2
in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants
Bodfr1-1
and
Bodfr1-2
, while
Bodfr2-1
and
Bodfr2-2
had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in
BoDFR1
, rather than that in
BoDFR2
, underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants. |
doi_str_mv | 10.1007/s00122-022-04079-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2646719599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707515217</galeid><sourcerecordid>A707515217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi1ERZfCC3BAkbjAIe3YseP4uC0tVKpUqcDZ8iaTkOLYxU4Q-_a1tYVqUYWska2Z7x_5t4eQNxSOKYA8iQCUsRJycJCq3D4jK8orVjLG2XOygpQuhRTskLyM8RYAmIDqBTmsRFXzWskVMesijm6wWG5MxGJ0EcM8epdOxan_eHFDi4BxsXPMGetjLHxfGDd_9-3WuMTn_BAQXWnR_MKu8MGZCd1sbPHDWHxFDnpjI75-2I_It4vzr2efy6vrT5dn66uy5bKeS5SKck6rjnFZ1T3rsOLY8oa3wrRCmU2HoLoa6lTkDQKXXPWN6RpVC9lBUx2R97u-d8H_XDDOehpji9Yah36JmiXHkiqhVELf_YPe-iXd2mZKSiUEFeyRGpILPbrez8G0ualeS5CZoTJRx09QaXU4ja132I8pvyf4sCdIzIy_58EsMerLLzf7LNuxbUgvH7DXd2GcTNhqCjrPgN7NgIYceQb0NonePrhbNhN2fyV_Pj0B1Q6IqeQGDI_2_9P2HkEruPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677955152</pqid></control><display><type>article</type><title>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</title><source>Springer Nature</source><creator>Zhang, Yuting ; Feng, Xin ; Liu, Yang ; Zhou, Fuhui ; Zhu, Pengfang</creator><creatorcontrib>Zhang, Yuting ; Feng, Xin ; Liu, Yang ; Zhou, Fuhui ; Zhu, Pengfang</creatorcontrib><description>Key message
A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant.
Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes
BoDFR1
(
Bo9g058630
) and its ortholog
BoDFR2
(
Bo2g116380
) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced
BoDFR1
and
BoDFR2
from both types of kale
.
We identified a 1-bp insertion in
BoDFR1
and a 2-bp insertion in
BoDFR2
in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out
BoDFR1
or
BoDFR2
in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants
Bodfr1-1
and
Bodfr1-2
, while
Bodfr2-1
and
Bodfr2-2
had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in
BoDFR1
, rather than that in
BoDFR2
, underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04079-y</identifier><identifier>PMID: 35364697</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Anthocyanin ; Anthocyanins ; Bioaccumulation ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Color of leaves ; CRISPR ; Gene mapping ; Gene mutations ; Genetic aspects ; Genome editing ; Genomes ; Germplasm ; Inbreeding ; Insertion ; Kale ; Life Sciences ; Original Article ; Ornamental plants ; Physiological aspects ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Transcriptomes ; Translation termination ; Vegetables</subject><ispartof>Theoretical and applied genetics, 2022-06, Vol.135 (6), p.1855-1865</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</citedby><cites>FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</cites><orcidid>0000-0003-1670-3504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35364697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuting</creatorcontrib><creatorcontrib>Feng, Xin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Zhu, Pengfang</creatorcontrib><title>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant.
Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes
BoDFR1
(
Bo9g058630
) and its ortholog
BoDFR2
(
Bo2g116380
) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced
BoDFR1
and
BoDFR2
from both types of kale
.
We identified a 1-bp insertion in
BoDFR1
and a 2-bp insertion in
BoDFR2
in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out
BoDFR1
or
BoDFR2
in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants
Bodfr1-1
and
Bodfr1-2
, while
Bodfr2-1
and
Bodfr2-2
had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in
BoDFR1
, rather than that in
BoDFR2
, underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Anthocyanin</subject><subject>Anthocyanins</subject><subject>Bioaccumulation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Color of leaves</subject><subject>CRISPR</subject><subject>Gene mapping</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Germplasm</subject><subject>Inbreeding</subject><subject>Insertion</subject><subject>Kale</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Ornamental plants</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Transcriptomes</subject><subject>Translation termination</subject><subject>Vegetables</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9ksFu1DAQhi1ERZfCC3BAkbjAIe3YseP4uC0tVKpUqcDZ8iaTkOLYxU4Q-_a1tYVqUYWska2Z7x_5t4eQNxSOKYA8iQCUsRJycJCq3D4jK8orVjLG2XOygpQuhRTskLyM8RYAmIDqBTmsRFXzWskVMesijm6wWG5MxGJ0EcM8epdOxan_eHFDi4BxsXPMGetjLHxfGDd_9-3WuMTn_BAQXWnR_MKu8MGZCd1sbPHDWHxFDnpjI75-2I_It4vzr2efy6vrT5dn66uy5bKeS5SKck6rjnFZ1T3rsOLY8oa3wrRCmU2HoLoa6lTkDQKXXPWN6RpVC9lBUx2R97u-d8H_XDDOehpji9Yah36JmiXHkiqhVELf_YPe-iXd2mZKSiUEFeyRGpILPbrez8G0ualeS5CZoTJRx09QaXU4ja132I8pvyf4sCdIzIy_58EsMerLLzf7LNuxbUgvH7DXd2GcTNhqCjrPgN7NgIYceQb0NonePrhbNhN2fyV_Pj0B1Q6IqeQGDI_2_9P2HkEruPA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Yuting</creator><creator>Feng, Xin</creator><creator>Liu, Yang</creator><creator>Zhou, Fuhui</creator><creator>Zhu, Pengfang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1670-3504</orcidid></search><sort><creationdate>20220601</creationdate><title>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</title><author>Zhang, Yuting ; Feng, Xin ; Liu, Yang ; Zhou, Fuhui ; Zhu, Pengfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Anthocyanin</topic><topic>Anthocyanins</topic><topic>Bioaccumulation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Color of leaves</topic><topic>CRISPR</topic><topic>Gene mapping</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Germplasm</topic><topic>Inbreeding</topic><topic>Insertion</topic><topic>Kale</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Ornamental plants</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Transcriptomes</topic><topic>Translation termination</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuting</creatorcontrib><creatorcontrib>Feng, Xin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Zhu, Pengfang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuting</au><au>Feng, Xin</au><au>Liu, Yang</au><au>Zhou, Fuhui</au><au>Zhu, Pengfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>135</volume><issue>6</issue><spage>1855</spage><epage>1865</epage><pages>1855-1865</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant.
Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes
BoDFR1
(
Bo9g058630
) and its ortholog
BoDFR2
(
Bo2g116380
) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced
BoDFR1
and
BoDFR2
from both types of kale
.
We identified a 1-bp insertion in
BoDFR1
and a 2-bp insertion in
BoDFR2
in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out
BoDFR1
or
BoDFR2
in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants
Bodfr1-1
and
Bodfr1-2
, while
Bodfr2-1
and
Bodfr2-2
had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in
BoDFR1
, rather than that in
BoDFR2
, underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35364697</pmid><doi>10.1007/s00122-022-04079-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1670-3504</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-06, Vol.135 (6), p.1855-1865 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2646719599 |
source | Springer Nature |
subjects | Agricultural research Agriculture Anthocyanin Anthocyanins Bioaccumulation Biochemistry Biomedical and Life Sciences Biotechnology Color of leaves CRISPR Gene mapping Gene mutations Genetic aspects Genome editing Genomes Germplasm Inbreeding Insertion Kale Life Sciences Original Article Ornamental plants Physiological aspects Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Transcriptomes Translation termination Vegetables |
title | A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-base%20insertion%20in%20BoDFR1%20results%20in%20loss%20of%20anthocyanins%20in%20green-leaved%20ornamental%20kale&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Zhang,%20Yuting&rft.date=2022-06-01&rft.volume=135&rft.issue=6&rft.spage=1855&rft.epage=1865&rft.pages=1855-1865&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04079-y&rft_dat=%3Cgale_proqu%3EA707515217%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677955152&rft_id=info:pmid/35364697&rft_galeid=A707515217&rfr_iscdi=true |