Loading…

A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale

Key message A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for orna...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2022-06, Vol.135 (6), p.1855-1865
Main Authors: Zhang, Yuting, Feng, Xin, Liu, Yang, Zhou, Fuhui, Zhu, Pengfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083
cites cdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083
container_end_page 1865
container_issue 6
container_start_page 1855
container_title Theoretical and applied genetics
container_volume 135
creator Zhang, Yuting
Feng, Xin
Liu, Yang
Zhou, Fuhui
Zhu, Pengfang
description Key message A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes BoDFR1 ( Bo9g058630 ) and its ortholog BoDFR2 ( Bo2g116380 ) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced BoDFR1 and BoDFR2 from both types of kale . We identified a 1-bp insertion in BoDFR1 and a 2-bp insertion in BoDFR2 in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out BoDFR1 or BoDFR2 in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants Bodfr1-1 and Bodfr1-2 , while Bodfr2-1 and Bodfr2-2 had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in BoDFR1 , rather than that in BoDFR2 , underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.
doi_str_mv 10.1007/s00122-022-04079-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2646719599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707515217</galeid><sourcerecordid>A707515217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi1ERZfCC3BAkbjAIe3YseP4uC0tVKpUqcDZ8iaTkOLYxU4Q-_a1tYVqUYWska2Z7x_5t4eQNxSOKYA8iQCUsRJycJCq3D4jK8orVjLG2XOygpQuhRTskLyM8RYAmIDqBTmsRFXzWskVMesijm6wWG5MxGJ0EcM8epdOxan_eHFDi4BxsXPMGetjLHxfGDd_9-3WuMTn_BAQXWnR_MKu8MGZCd1sbPHDWHxFDnpjI75-2I_It4vzr2efy6vrT5dn66uy5bKeS5SKck6rjnFZ1T3rsOLY8oa3wrRCmU2HoLoa6lTkDQKXXPWN6RpVC9lBUx2R97u-d8H_XDDOehpji9Yah36JmiXHkiqhVELf_YPe-iXd2mZKSiUEFeyRGpILPbrez8G0ualeS5CZoTJRx09QaXU4ja132I8pvyf4sCdIzIy_58EsMerLLzf7LNuxbUgvH7DXd2GcTNhqCjrPgN7NgIYceQb0NonePrhbNhN2fyV_Pj0B1Q6IqeQGDI_2_9P2HkEruPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677955152</pqid></control><display><type>article</type><title>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</title><source>Springer Nature</source><creator>Zhang, Yuting ; Feng, Xin ; Liu, Yang ; Zhou, Fuhui ; Zhu, Pengfang</creator><creatorcontrib>Zhang, Yuting ; Feng, Xin ; Liu, Yang ; Zhou, Fuhui ; Zhu, Pengfang</creatorcontrib><description>Key message A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes BoDFR1 ( Bo9g058630 ) and its ortholog BoDFR2 ( Bo2g116380 ) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced BoDFR1 and BoDFR2 from both types of kale . We identified a 1-bp insertion in BoDFR1 and a 2-bp insertion in BoDFR2 in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out BoDFR1 or BoDFR2 in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants Bodfr1-1 and Bodfr1-2 , while Bodfr2-1 and Bodfr2-2 had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in BoDFR1 , rather than that in BoDFR2 , underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04079-y</identifier><identifier>PMID: 35364697</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Anthocyanin ; Anthocyanins ; Bioaccumulation ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Color of leaves ; CRISPR ; Gene mapping ; Gene mutations ; Genetic aspects ; Genome editing ; Genomes ; Germplasm ; Inbreeding ; Insertion ; Kale ; Life Sciences ; Original Article ; Ornamental plants ; Physiological aspects ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Transcriptomes ; Translation termination ; Vegetables</subject><ispartof>Theoretical and applied genetics, 2022-06, Vol.135 (6), p.1855-1865</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</citedby><cites>FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</cites><orcidid>0000-0003-1670-3504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35364697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuting</creatorcontrib><creatorcontrib>Feng, Xin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Zhu, Pengfang</creatorcontrib><title>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes BoDFR1 ( Bo9g058630 ) and its ortholog BoDFR2 ( Bo2g116380 ) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced BoDFR1 and BoDFR2 from both types of kale . We identified a 1-bp insertion in BoDFR1 and a 2-bp insertion in BoDFR2 in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out BoDFR1 or BoDFR2 in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants Bodfr1-1 and Bodfr1-2 , while Bodfr2-1 and Bodfr2-2 had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in BoDFR1 , rather than that in BoDFR2 , underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Anthocyanin</subject><subject>Anthocyanins</subject><subject>Bioaccumulation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Color of leaves</subject><subject>CRISPR</subject><subject>Gene mapping</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Germplasm</subject><subject>Inbreeding</subject><subject>Insertion</subject><subject>Kale</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Ornamental plants</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Transcriptomes</subject><subject>Translation termination</subject><subject>Vegetables</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9ksFu1DAQhi1ERZfCC3BAkbjAIe3YseP4uC0tVKpUqcDZ8iaTkOLYxU4Q-_a1tYVqUYWska2Z7x_5t4eQNxSOKYA8iQCUsRJycJCq3D4jK8orVjLG2XOygpQuhRTskLyM8RYAmIDqBTmsRFXzWskVMesijm6wWG5MxGJ0EcM8epdOxan_eHFDi4BxsXPMGetjLHxfGDd_9-3WuMTn_BAQXWnR_MKu8MGZCd1sbPHDWHxFDnpjI75-2I_It4vzr2efy6vrT5dn66uy5bKeS5SKck6rjnFZ1T3rsOLY8oa3wrRCmU2HoLoa6lTkDQKXXPWN6RpVC9lBUx2R97u-d8H_XDDOehpji9Yah36JmiXHkiqhVELf_YPe-iXd2mZKSiUEFeyRGpILPbrez8G0ualeS5CZoTJRx09QaXU4ja132I8pvyf4sCdIzIy_58EsMerLLzf7LNuxbUgvH7DXd2GcTNhqCjrPgN7NgIYceQb0NonePrhbNhN2fyV_Pj0B1Q6IqeQGDI_2_9P2HkEruPA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Yuting</creator><creator>Feng, Xin</creator><creator>Liu, Yang</creator><creator>Zhou, Fuhui</creator><creator>Zhu, Pengfang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1670-3504</orcidid></search><sort><creationdate>20220601</creationdate><title>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</title><author>Zhang, Yuting ; Feng, Xin ; Liu, Yang ; Zhou, Fuhui ; Zhu, Pengfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Anthocyanin</topic><topic>Anthocyanins</topic><topic>Bioaccumulation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Color of leaves</topic><topic>CRISPR</topic><topic>Gene mapping</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Germplasm</topic><topic>Inbreeding</topic><topic>Insertion</topic><topic>Kale</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Ornamental plants</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Transcriptomes</topic><topic>Translation termination</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuting</creatorcontrib><creatorcontrib>Feng, Xin</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Zhu, Pengfang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuting</au><au>Feng, Xin</au><au>Liu, Yang</au><au>Zhou, Fuhui</au><au>Zhu, Pengfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>135</volume><issue>6</issue><spage>1855</spage><epage>1865</epage><pages>1855-1865</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes BoDFR1 ( Bo9g058630 ) and its ortholog BoDFR2 ( Bo2g116380 ) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced BoDFR1 and BoDFR2 from both types of kale . We identified a 1-bp insertion in BoDFR1 and a 2-bp insertion in BoDFR2 in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out BoDFR1 or BoDFR2 in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants Bodfr1-1 and Bodfr1-2 , while Bodfr2-1 and Bodfr2-2 had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in BoDFR1 , rather than that in BoDFR2 , underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35364697</pmid><doi>10.1007/s00122-022-04079-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1670-3504</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022-06, Vol.135 (6), p.1855-1865
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2646719599
source Springer Nature
subjects Agricultural research
Agriculture
Anthocyanin
Anthocyanins
Bioaccumulation
Biochemistry
Biomedical and Life Sciences
Biotechnology
Color of leaves
CRISPR
Gene mapping
Gene mutations
Genetic aspects
Genome editing
Genomes
Germplasm
Inbreeding
Insertion
Kale
Life Sciences
Original Article
Ornamental plants
Physiological aspects
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Transcriptomes
Translation termination
Vegetables
title A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-base%20insertion%20in%20BoDFR1%20results%20in%20loss%20of%20anthocyanins%20in%20green-leaved%20ornamental%20kale&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Zhang,%20Yuting&rft.date=2022-06-01&rft.volume=135&rft.issue=6&rft.spage=1855&rft.epage=1865&rft.pages=1855-1865&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04079-y&rft_dat=%3Cgale_proqu%3EA707515217%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-e7914413d24736f2de34ec484c5ac59abde09d60636f48e04749f8ad89657d083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677955152&rft_id=info:pmid/35364697&rft_galeid=A707515217&rfr_iscdi=true