Loading…
Regulation of IRF3 activation in human antiviral signaling pathways
[Display omitted] The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator o...
Saved in:
Published in: | Biochemical pharmacology 2022-06, Vol.200, p.115026-115026, Article 115026 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3 |
container_end_page | 115026 |
container_issue | |
container_start_page | 115026 |
container_title | Biochemical pharmacology |
container_volume | 200 |
creator | AL Hamrashdi, Mariya Brady, Gareth |
description | [Display omitted]
The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation. |
doi_str_mv | 10.1016/j.bcp.2022.115026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2646940472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295222001204</els_id><sourcerecordid>2646940472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMobk4_gC_SR19a86dNUnyS4XQwEIY-hyRNtow2nUk72be3o-qjT_fewzkH7g-AWwQzBBF92GVK7zMMMc4QKiCmZ2CKOCMpLik_B1MIIR32Ak_AVYy708kpugQTUhDKUMmnYL42m76WnWt90tpkuV6QROrOHUbJ-WTbN9In0g-aC7JOott4WTu_Sfay237JY7wGF1bW0dz8zBn4WDy_z1_T1dvLcv60SjXBtEs5MwbqnGrGGNKQYaw1JVxaq8vCYoupYjnhWBGFDCxtQSpZ5ZWqCq4kkorMwP3Yuw_tZ29iJxoXtalr6U3bR4FpTssc5gwPVjRadWhjDMaKfXCNDEeBoDixEzsxsBMndmJkN2Tufup71ZjqL_ELazA8jgYzPHlwJoionfHaVC4Y3Ymqdf_UfwNZ_37d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646940472</pqid></control><display><type>article</type><title>Regulation of IRF3 activation in human antiviral signaling pathways</title><source>ScienceDirect Freedom Collection</source><creator>AL Hamrashdi, Mariya ; Brady, Gareth</creator><creatorcontrib>AL Hamrashdi, Mariya ; Brady, Gareth</creatorcontrib><description>[Display omitted]
The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2022.115026</identifier><identifier>PMID: 35367198</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Antiviral Agents - pharmacology ; Humans ; I-kappa B Kinase - metabolism ; IKKε ; Immunity, Innate ; Interferon Regulatory Factor-3 - metabolism ; Interferon Regulatory Factors - metabolism ; IRF3 ; NAP1 ; Phosphorylation ; Signal Transduction ; TANK ; TBK1 ; TBKBP1</subject><ispartof>Biochemical pharmacology, 2022-06, Vol.200, p.115026-115026, Article 115026</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</citedby><cites>FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35367198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>AL Hamrashdi, Mariya</creatorcontrib><creatorcontrib>Brady, Gareth</creatorcontrib><title>Regulation of IRF3 activation in human antiviral signaling pathways</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted]
The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.</description><subject>Antiviral Agents - pharmacology</subject><subject>Humans</subject><subject>I-kappa B Kinase - metabolism</subject><subject>IKKε</subject><subject>Immunity, Innate</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Interferon Regulatory Factors - metabolism</subject><subject>IRF3</subject><subject>NAP1</subject><subject>Phosphorylation</subject><subject>Signal Transduction</subject><subject>TANK</subject><subject>TBK1</subject><subject>TBKBP1</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMobk4_gC_SR19a86dNUnyS4XQwEIY-hyRNtow2nUk72be3o-qjT_fewzkH7g-AWwQzBBF92GVK7zMMMc4QKiCmZ2CKOCMpLik_B1MIIR32Ak_AVYy708kpugQTUhDKUMmnYL42m76WnWt90tpkuV6QROrOHUbJ-WTbN9In0g-aC7JOott4WTu_Sfay237JY7wGF1bW0dz8zBn4WDy_z1_T1dvLcv60SjXBtEs5MwbqnGrGGNKQYaw1JVxaq8vCYoupYjnhWBGFDCxtQSpZ5ZWqCq4kkorMwP3Yuw_tZ29iJxoXtalr6U3bR4FpTssc5gwPVjRadWhjDMaKfXCNDEeBoDixEzsxsBMndmJkN2Tufup71ZjqL_ELazA8jgYzPHlwJoionfHaVC4Y3Ymqdf_UfwNZ_37d</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>AL Hamrashdi, Mariya</creator><creator>Brady, Gareth</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202206</creationdate><title>Regulation of IRF3 activation in human antiviral signaling pathways</title><author>AL Hamrashdi, Mariya ; Brady, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiviral Agents - pharmacology</topic><topic>Humans</topic><topic>I-kappa B Kinase - metabolism</topic><topic>IKKε</topic><topic>Immunity, Innate</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Interferon Regulatory Factors - metabolism</topic><topic>IRF3</topic><topic>NAP1</topic><topic>Phosphorylation</topic><topic>Signal Transduction</topic><topic>TANK</topic><topic>TBK1</topic><topic>TBKBP1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL Hamrashdi, Mariya</creatorcontrib><creatorcontrib>Brady, Gareth</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL Hamrashdi, Mariya</au><au>Brady, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of IRF3 activation in human antiviral signaling pathways</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2022-06</date><risdate>2022</risdate><volume>200</volume><spage>115026</spage><epage>115026</epage><pages>115026-115026</pages><artnum>115026</artnum><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>[Display omitted]
The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>35367198</pmid><doi>10.1016/j.bcp.2022.115026</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2952 |
ispartof | Biochemical pharmacology, 2022-06, Vol.200, p.115026-115026, Article 115026 |
issn | 0006-2952 1873-2968 |
language | eng |
recordid | cdi_proquest_miscellaneous_2646940472 |
source | ScienceDirect Freedom Collection |
subjects | Antiviral Agents - pharmacology Humans I-kappa B Kinase - metabolism IKKε Immunity, Innate Interferon Regulatory Factor-3 - metabolism Interferon Regulatory Factors - metabolism IRF3 NAP1 Phosphorylation Signal Transduction TANK TBK1 TBKBP1 |
title | Regulation of IRF3 activation in human antiviral signaling pathways |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20IRF3%20activation%20in%20human%20antiviral%20signaling%20pathways&rft.jtitle=Biochemical%20pharmacology&rft.au=AL%20Hamrashdi,%20Mariya&rft.date=2022-06&rft.volume=200&rft.spage=115026&rft.epage=115026&rft.pages=115026-115026&rft.artnum=115026&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2022.115026&rft_dat=%3Cproquest_cross%3E2646940472%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646940472&rft_id=info:pmid/35367198&rfr_iscdi=true |