Loading…

Regulation of IRF3 activation in human antiviral signaling pathways

[Display omitted] The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator o...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical pharmacology 2022-06, Vol.200, p.115026-115026, Article 115026
Main Authors: AL Hamrashdi, Mariya, Brady, Gareth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3
cites cdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3
container_end_page 115026
container_issue
container_start_page 115026
container_title Biochemical pharmacology
container_volume 200
creator AL Hamrashdi, Mariya
Brady, Gareth
description [Display omitted] The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.
doi_str_mv 10.1016/j.bcp.2022.115026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2646940472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295222001204</els_id><sourcerecordid>2646940472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMobk4_gC_SR19a86dNUnyS4XQwEIY-hyRNtow2nUk72be3o-qjT_fewzkH7g-AWwQzBBF92GVK7zMMMc4QKiCmZ2CKOCMpLik_B1MIIR32Ak_AVYy708kpugQTUhDKUMmnYL42m76WnWt90tpkuV6QROrOHUbJ-WTbN9In0g-aC7JOott4WTu_Sfay237JY7wGF1bW0dz8zBn4WDy_z1_T1dvLcv60SjXBtEs5MwbqnGrGGNKQYaw1JVxaq8vCYoupYjnhWBGFDCxtQSpZ5ZWqCq4kkorMwP3Yuw_tZ29iJxoXtalr6U3bR4FpTssc5gwPVjRadWhjDMaKfXCNDEeBoDixEzsxsBMndmJkN2Tufup71ZjqL_ELazA8jgYzPHlwJoionfHaVC4Y3Ymqdf_UfwNZ_37d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646940472</pqid></control><display><type>article</type><title>Regulation of IRF3 activation in human antiviral signaling pathways</title><source>ScienceDirect Freedom Collection</source><creator>AL Hamrashdi, Mariya ; Brady, Gareth</creator><creatorcontrib>AL Hamrashdi, Mariya ; Brady, Gareth</creatorcontrib><description>[Display omitted] The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2022.115026</identifier><identifier>PMID: 35367198</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Antiviral Agents - pharmacology ; Humans ; I-kappa B Kinase - metabolism ; IKKε ; Immunity, Innate ; Interferon Regulatory Factor-3 - metabolism ; Interferon Regulatory Factors - metabolism ; IRF3 ; NAP1 ; Phosphorylation ; Signal Transduction ; TANK ; TBK1 ; TBKBP1</subject><ispartof>Biochemical pharmacology, 2022-06, Vol.200, p.115026-115026, Article 115026</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</citedby><cites>FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35367198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>AL Hamrashdi, Mariya</creatorcontrib><creatorcontrib>Brady, Gareth</creatorcontrib><title>Regulation of IRF3 activation in human antiviral signaling pathways</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted] The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.</description><subject>Antiviral Agents - pharmacology</subject><subject>Humans</subject><subject>I-kappa B Kinase - metabolism</subject><subject>IKKε</subject><subject>Immunity, Innate</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Interferon Regulatory Factors - metabolism</subject><subject>IRF3</subject><subject>NAP1</subject><subject>Phosphorylation</subject><subject>Signal Transduction</subject><subject>TANK</subject><subject>TBK1</subject><subject>TBKBP1</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMobk4_gC_SR19a86dNUnyS4XQwEIY-hyRNtow2nUk72be3o-qjT_fewzkH7g-AWwQzBBF92GVK7zMMMc4QKiCmZ2CKOCMpLik_B1MIIR32Ak_AVYy708kpugQTUhDKUMmnYL42m76WnWt90tpkuV6QROrOHUbJ-WTbN9In0g-aC7JOott4WTu_Sfay237JY7wGF1bW0dz8zBn4WDy_z1_T1dvLcv60SjXBtEs5MwbqnGrGGNKQYaw1JVxaq8vCYoupYjnhWBGFDCxtQSpZ5ZWqCq4kkorMwP3Yuw_tZ29iJxoXtalr6U3bR4FpTssc5gwPVjRadWhjDMaKfXCNDEeBoDixEzsxsBMndmJkN2Tufup71ZjqL_ELazA8jgYzPHlwJoionfHaVC4Y3Ymqdf_UfwNZ_37d</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>AL Hamrashdi, Mariya</creator><creator>Brady, Gareth</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202206</creationdate><title>Regulation of IRF3 activation in human antiviral signaling pathways</title><author>AL Hamrashdi, Mariya ; Brady, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiviral Agents - pharmacology</topic><topic>Humans</topic><topic>I-kappa B Kinase - metabolism</topic><topic>IKKε</topic><topic>Immunity, Innate</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Interferon Regulatory Factors - metabolism</topic><topic>IRF3</topic><topic>NAP1</topic><topic>Phosphorylation</topic><topic>Signal Transduction</topic><topic>TANK</topic><topic>TBK1</topic><topic>TBKBP1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL Hamrashdi, Mariya</creatorcontrib><creatorcontrib>Brady, Gareth</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL Hamrashdi, Mariya</au><au>Brady, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of IRF3 activation in human antiviral signaling pathways</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2022-06</date><risdate>2022</risdate><volume>200</volume><spage>115026</spage><epage>115026</epage><pages>115026-115026</pages><artnum>115026</artnum><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>[Display omitted] The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>35367198</pmid><doi>10.1016/j.bcp.2022.115026</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 2022-06, Vol.200, p.115026-115026, Article 115026
issn 0006-2952
1873-2968
language eng
recordid cdi_proquest_miscellaneous_2646940472
source ScienceDirect Freedom Collection
subjects Antiviral Agents - pharmacology
Humans
I-kappa B Kinase - metabolism
IKKε
Immunity, Innate
Interferon Regulatory Factor-3 - metabolism
Interferon Regulatory Factors - metabolism
IRF3
NAP1
Phosphorylation
Signal Transduction
TANK
TBK1
TBKBP1
title Regulation of IRF3 activation in human antiviral signaling pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20IRF3%20activation%20in%20human%20antiviral%20signaling%20pathways&rft.jtitle=Biochemical%20pharmacology&rft.au=AL%20Hamrashdi,%20Mariya&rft.date=2022-06&rft.volume=200&rft.spage=115026&rft.epage=115026&rft.pages=115026-115026&rft.artnum=115026&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2022.115026&rft_dat=%3Cproquest_cross%3E2646940472%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-87ee0c46c7771c0722cc638affc95f2f26b74382b3b1e09f53dad4dbd58ba1ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646940472&rft_id=info:pmid/35367198&rfr_iscdi=true