Loading…

Magnetization transfer ratio for assessing remyelination after transcranial ultrasound stimulation in the lysolecithin rat model of multiple sclerosis

It has been shown that transcranial ultrasound stimulation (TUS) is capable of attenuating myelin loss and providing neuroprotection in animal models of brain disorders. In this study, we investigated the ability of TUS to promote remyelination in the lysolecithin (LPC)-induced local demyelination i...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2023-02, Vol.33 (4), p.1403-1411
Main Authors: Huang, Li-Hsin, Pan, Zih-Yun, Pan, Yi-Ju, Yang, Feng-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been shown that transcranial ultrasound stimulation (TUS) is capable of attenuating myelin loss and providing neuroprotection in animal models of brain disorders. In this study, we investigated the ability of TUS to promote remyelination in the lysolecithin (LPC)-induced local demyelination in the hippocampus. Demyelination was induced by the micro-injection of 1.5 μL LPC (1%) into the rat hippocampus and the treated group received daily TUS for 5 or 12 days. Magnetic resonance imaging techniques, including magnetization transfer ratio (MTR) and T2-weighted imaging, were used to longitudinally characterize the demyelination model. Furthermore, the therapeutic effects of TUS on LPC-induced demyelination were assessed by Luxol fast blue (LFB) staining. Our data revealed that reductions in MTR values observed during demyelination recover almost completely upon remyelination. The MTR values in demyelinated lesions were significantly higher in TUS-treated rats than in the LPC-only group after undergoing TUS. Form histological observation, TUS significantly reduced the size of demyelinated lesion 7 days after LPC administration. This study demonstrated that MTR was a sensitive and reproducible quantitative marker to assess remyelination process in vivo during TUS treatment. These findings might open new promising treatment strategies for demyelinating diseases such as multiple sclerosis.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhac144