Loading…

Co–Ni Layered Double Hydroxide for the Electrocatalytic Oxidation of Organic Molecules: An Approach to Lowering the Overall Cell Voltage for the Water Splitting Process

Electrocatalytic oxidation of simple organic molecules offers a promising strategy to combat the sluggish kinetics of the water oxidation reaction (WOR). The low potential requirement, inhibition of the crossover of gases, and formation of value-added products at the anode are benefits of the electr...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-04, Vol.14 (14), p.16222-16232
Main Authors: Shilpa, Nagaraju, Pandikassala, Ajmal, Krishnaraj, Perayil, Walko, Priyanka S, Devi, R. Nandini, Kurungot, Sreekumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrocatalytic oxidation of simple organic molecules offers a promising strategy to combat the sluggish kinetics of the water oxidation reaction (WOR). The low potential requirement, inhibition of the crossover of gases, and formation of value-added products at the anode are benefits of the electrocatalytic oxidation of organic molecules. Herein, we developed cobalt–nickel-based layered double hydroxide (LDH) as a robust material for the electrocatalytic oxidation of alcohols and urea at the anode, replacing the WOR. A facile synthesis protocol to form LDHs with different ratios of Co and Ni is adapted. It demonstrates that the reactants could be efficiently oxidized to concomitant chemical products at the anode. The half-cell study shows an onset potential of 1.30 V for benzyl alcohol oxidation reaction (BAOR), 1.36 V for glycerol oxidation reaction (GOR), 1.33 V for ethanol oxidation reaction (EOR), and 1.32 V for urea oxidation reaction (UOR) compared with 1.53 V for WOR. Notably, the hybrid electrolyzer in a full-cell configuration significantly reduces the overall cell voltage at a 20 mA cm–2 current density by ∼15% while coupling with the BAOR, EOR, and GOR and ∼12% with the UOR as the anodic half-cell reaction. Furthermore, the efficiency of hydrogen generation remains unhampered with the types of oxidation reactions (alcohols and urea) occurring at the anode. This work demonstrates the prospects of lowering the overall cell voltage in the case of a water electrolyzer by integrating the hydrogen evolution reaction with suitable organic molecule oxidation.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c00982