Loading…

A Review of Techniques for Surface Electromyography Signal Quality Analysis

Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misint...

Full description

Saved in:
Bibliographic Details
Published in:IEEE reviews in biomedical engineering 2023, Vol.16, p.472-486
Main Authors: Farago, Emma, MacIsaac, Dawn, Suk, Michelle, Chan, Adrian D. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.
ISSN:1937-3333
1941-1189
DOI:10.1109/RBME.2022.3164797