Loading…

Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant

Objectives Shellfish waste is a primary source for making N -acetyl- d -glucosamine. Thus, establishing a high-efficiency and low-cost bioconversion method to produce N -acetyl- d -glucosamine directly from shellfish waste was promising. Results A mutant C81 was obtained from Chitinolyticbacter meiy...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology letters 2022-04, Vol.44 (4), p.623-633
Main Authors: Hao, Zhi-kui, Li, Jian-song, Wang, Dan-hua, He, Fei, Xue, Jing-shi, Yin, Liang-hong, Zheng, Hua-bao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-ae34ef3747da3f40de3ff87f15379eac5329aadd550b37836acd9b655ee2aa623
container_end_page 633
container_issue 4
container_start_page 623
container_title Biotechnology letters
container_volume 44
creator Hao, Zhi-kui
Li, Jian-song
Wang, Dan-hua
He, Fei
Xue, Jing-shi
Yin, Liang-hong
Zheng, Hua-bao
description Objectives Shellfish waste is a primary source for making N -acetyl- d -glucosamine. Thus, establishing a high-efficiency and low-cost bioconversion method to produce N -acetyl- d -glucosamine directly from shellfish waste was promising. Results A mutant C81 was obtained from Chitinolyticbacter meiyuanensis SYBC-H1 via 60 Co-γ irradiation. This mutant C81 showed the highest chitinase activity of 9.8 U/mL that was 85% higher than the parent strain. The mutant C81 exhibted improved antioxidant activities, including total antioxidant capacity, superoxide radical ability, and hydroxyl radical scavenging ability, compared to that of the parent strain. Four out of nine organic solvents increased the chitinase activity by 1.9%, 6.8%, 11.7%, and 15.8%, corresponding to methylbenzene, n-heptane, petroleum ether, and n-hexane, respectively. The biphase system composed of aqueous and hexane presented a five-fold reduction of cell viability compared to the control. Using a continuous fermentation bioconversion process, 4.2 g/L GlcNAc was produced from crayfish shell powder with a yield of 80% of the chitin content. Conclusions This study demonstrated that the mutant C81 is suitable for converting crayfish shell powder into GlcNAc in an aqueous-organic system.
doi_str_mv 10.1007/s10529-022-03248-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2647655913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647655913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ae34ef3747da3f40de3ff87f15379eac5329aadd550b37836acd9b655ee2aa623</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhonR2NvqC7gwJG7coMAZhmFZb2rbpNGFunBFuMyhpZlhWmDS3LcXvVUTFyYkLPjOz3_yEfJK8HeCc_2-CK6kYVxKxkF2AzNPyEYoDazXun9KNlx0gqnOyCNyXMot59xorp-TI1AwdD0fNuT-LIToI6ZK7_Iyrr7GJdEl0PPJfzr1NCbq2rlfcVkLW_K1S9HTsi8VZ_oQ6w11dHsTa0zLtK_R75yvmOmMcb-6hKnEQr98_7BlF4LOa3WpviDPgpsKvny8T8i3j2dftxfs6vP55fb0inmQfWUOocMAutOjg9DxESGEQQehQBt0XoE0zo2jUnwHeoDe-dHseqUQpXO9hBPy9pDb9mr1S7VzLB6nqdVqu1jZd7rhRkBD3_yD3i5rTq1do5QCUEqIRskD5fNSSsZg73KcXd5bwe1PIfYgxDYh9pcQa9rQ68fodTfj-Gfkt4EGwAEo7SldY_77939ifwBnn5bk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655335511</pqid></control><display><type>article</type><title>Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant</title><source>Springer Nature</source><creator>Hao, Zhi-kui ; Li, Jian-song ; Wang, Dan-hua ; He, Fei ; Xue, Jing-shi ; Yin, Liang-hong ; Zheng, Hua-bao</creator><creatorcontrib>Hao, Zhi-kui ; Li, Jian-song ; Wang, Dan-hua ; He, Fei ; Xue, Jing-shi ; Yin, Liang-hong ; Zheng, Hua-bao</creatorcontrib><description>Objectives Shellfish waste is a primary source for making N -acetyl- d -glucosamine. Thus, establishing a high-efficiency and low-cost bioconversion method to produce N -acetyl- d -glucosamine directly from shellfish waste was promising. Results A mutant C81 was obtained from Chitinolyticbacter meiyuanensis SYBC-H1 via 60 Co-γ irradiation. This mutant C81 showed the highest chitinase activity of 9.8 U/mL that was 85% higher than the parent strain. The mutant C81 exhibted improved antioxidant activities, including total antioxidant capacity, superoxide radical ability, and hydroxyl radical scavenging ability, compared to that of the parent strain. Four out of nine organic solvents increased the chitinase activity by 1.9%, 6.8%, 11.7%, and 15.8%, corresponding to methylbenzene, n-heptane, petroleum ether, and n-hexane, respectively. The biphase system composed of aqueous and hexane presented a five-fold reduction of cell viability compared to the control. Using a continuous fermentation bioconversion process, 4.2 g/L GlcNAc was produced from crayfish shell powder with a yield of 80% of the chitin content. Conclusions This study demonstrated that the mutant C81 is suitable for converting crayfish shell powder into GlcNAc in an aqueous-organic system.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-022-03248-9</identifier><identifier>PMID: 35384608</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acetylglucosamine ; Antioxidants ; Applied Microbiology ; Biochemistry ; Bioconversion ; Biomedical and Life Sciences ; Biotechnology ; Cell viability ; Chitin ; Chitinase ; Chitinases - genetics ; Chitinolyticbacter meiyuanensis ; Crayfish ; Fermentation ; Gamma irradiation ; Glucosamine ; Heptanes ; Hexanes ; Hydroxyl radicals ; Irradiation ; Life Sciences ; Microbiology ; Mutants ; N-Acetylglucosamine ; n-Hexane ; Neisseriaceae ; Organic solvents ; Original Research Paper ; Petroleum ether ; Powders ; Scavenging ; Shellfish ; γ Radiation</subject><ispartof>Biotechnology letters, 2022-04, Vol.44 (4), p.623-633</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-ae34ef3747da3f40de3ff87f15379eac5329aadd550b37836acd9b655ee2aa623</cites><orcidid>0000-0003-3509-7634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35384608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Zhi-kui</creatorcontrib><creatorcontrib>Li, Jian-song</creatorcontrib><creatorcontrib>Wang, Dan-hua</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Xue, Jing-shi</creatorcontrib><creatorcontrib>Yin, Liang-hong</creatorcontrib><creatorcontrib>Zheng, Hua-bao</creatorcontrib><title>Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objectives Shellfish waste is a primary source for making N -acetyl- d -glucosamine. Thus, establishing a high-efficiency and low-cost bioconversion method to produce N -acetyl- d -glucosamine directly from shellfish waste was promising. Results A mutant C81 was obtained from Chitinolyticbacter meiyuanensis SYBC-H1 via 60 Co-γ irradiation. This mutant C81 showed the highest chitinase activity of 9.8 U/mL that was 85% higher than the parent strain. The mutant C81 exhibted improved antioxidant activities, including total antioxidant capacity, superoxide radical ability, and hydroxyl radical scavenging ability, compared to that of the parent strain. Four out of nine organic solvents increased the chitinase activity by 1.9%, 6.8%, 11.7%, and 15.8%, corresponding to methylbenzene, n-heptane, petroleum ether, and n-hexane, respectively. The biphase system composed of aqueous and hexane presented a five-fold reduction of cell viability compared to the control. Using a continuous fermentation bioconversion process, 4.2 g/L GlcNAc was produced from crayfish shell powder with a yield of 80% of the chitin content. Conclusions This study demonstrated that the mutant C81 is suitable for converting crayfish shell powder into GlcNAc in an aqueous-organic system.</description><subject>Acetylglucosamine</subject><subject>Antioxidants</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Bioconversion</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell viability</subject><subject>Chitin</subject><subject>Chitinase</subject><subject>Chitinases - genetics</subject><subject>Chitinolyticbacter meiyuanensis</subject><subject>Crayfish</subject><subject>Fermentation</subject><subject>Gamma irradiation</subject><subject>Glucosamine</subject><subject>Heptanes</subject><subject>Hexanes</subject><subject>Hydroxyl radicals</subject><subject>Irradiation</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mutants</subject><subject>N-Acetylglucosamine</subject><subject>n-Hexane</subject><subject>Neisseriaceae</subject><subject>Organic solvents</subject><subject>Original Research Paper</subject><subject>Petroleum ether</subject><subject>Powders</subject><subject>Scavenging</subject><subject>Shellfish</subject><subject>γ Radiation</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFuFSEUhonR2NvqC7gwJG7coMAZhmFZb2rbpNGFunBFuMyhpZlhWmDS3LcXvVUTFyYkLPjOz3_yEfJK8HeCc_2-CK6kYVxKxkF2AzNPyEYoDazXun9KNlx0gqnOyCNyXMot59xorp-TI1AwdD0fNuT-LIToI6ZK7_Iyrr7GJdEl0PPJfzr1NCbq2rlfcVkLW_K1S9HTsi8VZ_oQ6w11dHsTa0zLtK_R75yvmOmMcb-6hKnEQr98_7BlF4LOa3WpviDPgpsKvny8T8i3j2dftxfs6vP55fb0inmQfWUOocMAutOjg9DxESGEQQehQBt0XoE0zo2jUnwHeoDe-dHseqUQpXO9hBPy9pDb9mr1S7VzLB6nqdVqu1jZd7rhRkBD3_yD3i5rTq1do5QCUEqIRskD5fNSSsZg73KcXd5bwe1PIfYgxDYh9pcQa9rQ68fodTfj-Gfkt4EGwAEo7SldY_77939ifwBnn5bk</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Hao, Zhi-kui</creator><creator>Li, Jian-song</creator><creator>Wang, Dan-hua</creator><creator>He, Fei</creator><creator>Xue, Jing-shi</creator><creator>Yin, Liang-hong</creator><creator>Zheng, Hua-bao</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3509-7634</orcidid></search><sort><creationdate>20220401</creationdate><title>Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant</title><author>Hao, Zhi-kui ; Li, Jian-song ; Wang, Dan-hua ; He, Fei ; Xue, Jing-shi ; Yin, Liang-hong ; Zheng, Hua-bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ae34ef3747da3f40de3ff87f15379eac5329aadd550b37836acd9b655ee2aa623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetylglucosamine</topic><topic>Antioxidants</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Bioconversion</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell viability</topic><topic>Chitin</topic><topic>Chitinase</topic><topic>Chitinases - genetics</topic><topic>Chitinolyticbacter meiyuanensis</topic><topic>Crayfish</topic><topic>Fermentation</topic><topic>Gamma irradiation</topic><topic>Glucosamine</topic><topic>Heptanes</topic><topic>Hexanes</topic><topic>Hydroxyl radicals</topic><topic>Irradiation</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mutants</topic><topic>N-Acetylglucosamine</topic><topic>n-Hexane</topic><topic>Neisseriaceae</topic><topic>Organic solvents</topic><topic>Original Research Paper</topic><topic>Petroleum ether</topic><topic>Powders</topic><topic>Scavenging</topic><topic>Shellfish</topic><topic>γ Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Zhi-kui</creatorcontrib><creatorcontrib>Li, Jian-song</creatorcontrib><creatorcontrib>Wang, Dan-hua</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Xue, Jing-shi</creatorcontrib><creatorcontrib>Yin, Liang-hong</creatorcontrib><creatorcontrib>Zheng, Hua-bao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Zhi-kui</au><au>Li, Jian-song</au><au>Wang, Dan-hua</au><au>He, Fei</au><au>Xue, Jing-shi</au><au>Yin, Liang-hong</au><au>Zheng, Hua-bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>44</volume><issue>4</issue><spage>623</spage><epage>633</epage><pages>623-633</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Objectives Shellfish waste is a primary source for making N -acetyl- d -glucosamine. Thus, establishing a high-efficiency and low-cost bioconversion method to produce N -acetyl- d -glucosamine directly from shellfish waste was promising. Results A mutant C81 was obtained from Chitinolyticbacter meiyuanensis SYBC-H1 via 60 Co-γ irradiation. This mutant C81 showed the highest chitinase activity of 9.8 U/mL that was 85% higher than the parent strain. The mutant C81 exhibted improved antioxidant activities, including total antioxidant capacity, superoxide radical ability, and hydroxyl radical scavenging ability, compared to that of the parent strain. Four out of nine organic solvents increased the chitinase activity by 1.9%, 6.8%, 11.7%, and 15.8%, corresponding to methylbenzene, n-heptane, petroleum ether, and n-hexane, respectively. The biphase system composed of aqueous and hexane presented a five-fold reduction of cell viability compared to the control. Using a continuous fermentation bioconversion process, 4.2 g/L GlcNAc was produced from crayfish shell powder with a yield of 80% of the chitin content. Conclusions This study demonstrated that the mutant C81 is suitable for converting crayfish shell powder into GlcNAc in an aqueous-organic system.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35384608</pmid><doi>10.1007/s10529-022-03248-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3509-7634</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2022-04, Vol.44 (4), p.623-633
issn 0141-5492
1573-6776
language eng
recordid cdi_proquest_miscellaneous_2647655913
source Springer Nature
subjects Acetylglucosamine
Antioxidants
Applied Microbiology
Biochemistry
Bioconversion
Biomedical and Life Sciences
Biotechnology
Cell viability
Chitin
Chitinase
Chitinases - genetics
Chitinolyticbacter meiyuanensis
Crayfish
Fermentation
Gamma irradiation
Glucosamine
Heptanes
Hexanes
Hydroxyl radicals
Irradiation
Life Sciences
Microbiology
Mutants
N-Acetylglucosamine
n-Hexane
Neisseriaceae
Organic solvents
Original Research Paper
Petroleum ether
Powders
Scavenging
Shellfish
γ Radiation
title Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20production%20of%20GlcNAc%20in%20an%20aqueous-organic%20system%20with%20a%20Chitinolyticbacter%20meiyuanensis%20SYBC-H1%20mutant&rft.jtitle=Biotechnology%20letters&rft.au=Hao,%20Zhi-kui&rft.date=2022-04-01&rft.volume=44&rft.issue=4&rft.spage=623&rft.epage=633&rft.pages=623-633&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-022-03248-9&rft_dat=%3Cproquest_cross%3E2647655913%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-ae34ef3747da3f40de3ff87f15379eac5329aadd550b37836acd9b655ee2aa623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655335511&rft_id=info:pmid/35384608&rfr_iscdi=true