Loading…
Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode
Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (14), p.e2107853-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33 |
container_end_page | n/a |
container_issue | 14 |
container_start_page | e2107853 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Chen, Chunhong Shi, Fangyi Zhang, Shishi Su, Yaqiong Xu, Zheng‐Long |
description | Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.
The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries. |
doi_str_mv | 10.1002/smll.202107853 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648064089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648064089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</originalsourceid><addsrcrecordid>eNqF0U9LwzAcBuAiCs7p1XPAi5fO_GnT9DjLdIO6gXPnkqTZlpG2M2mRfXtTJxt48ZRfkucNgTcI7hEcIQjxk6uMGWGIEUxYTC6CAaKIhJTh9PI0I3gd3Di3g5AgHCWDYL8yreWu5cIowOsSTPVmCya1spsDyLiRuqvAu5JbbjfqBz3ztlVWK-dVf1ACcZaz2t9JbnirmxroGnAwHy9n2WLuSbttSnUbXK25cerudx0Gq5fJRzYN88XrLBvnoSQpJKEgNE79JFQsBeJYUM5YwteICMwplhImkEHsd1RElAiS0IgJRFNGZIRKQobB4_HdvW0-O-XaotJOKmN4rZrOFdh7SCPIUk8f_tBd09na_65XSUwSlvRqdFTSNs5ZtS72VlfcHgoEi76Aoi-gOBXgA-kx8KWNOvyji-Vbnp-z3z6piGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647537879</pqid></control><display><type>article</type><title>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chen, Chunhong ; Shi, Fangyi ; Zhang, Shishi ; Su, Yaqiong ; Xu, Zheng‐Long</creator><creatorcontrib>Chen, Chunhong ; Shi, Fangyi ; Zhang, Shishi ; Su, Yaqiong ; Xu, Zheng‐Long</creatorcontrib><description>Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.
The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202107853</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Ca ion batteries ; Calcium ions ; cathode materials ; Cathodes ; Diffusion barriers ; Energy storage ; Fluorine ; Flux density ; full cells ; Intercalation ; Ionic mobility ; Nanotechnology ; NASICON structure ; Rechargeable batteries ; Sodium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (14), p.e2107853-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</citedby><cites>FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</cites><orcidid>0000-0002-8483-0532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Chunhong</creatorcontrib><creatorcontrib>Shi, Fangyi</creatorcontrib><creatorcontrib>Zhang, Shishi</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Xu, Zheng‐Long</creatorcontrib><title>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.
The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.</description><subject>Batteries</subject><subject>Ca ion batteries</subject><subject>Calcium ions</subject><subject>cathode materials</subject><subject>Cathodes</subject><subject>Diffusion barriers</subject><subject>Energy storage</subject><subject>Fluorine</subject><subject>Flux density</subject><subject>full cells</subject><subject>Intercalation</subject><subject>Ionic mobility</subject><subject>Nanotechnology</subject><subject>NASICON structure</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0U9LwzAcBuAiCs7p1XPAi5fO_GnT9DjLdIO6gXPnkqTZlpG2M2mRfXtTJxt48ZRfkucNgTcI7hEcIQjxk6uMGWGIEUxYTC6CAaKIhJTh9PI0I3gd3Di3g5AgHCWDYL8yreWu5cIowOsSTPVmCya1spsDyLiRuqvAu5JbbjfqBz3ztlVWK-dVf1ACcZaz2t9JbnirmxroGnAwHy9n2WLuSbttSnUbXK25cerudx0Gq5fJRzYN88XrLBvnoSQpJKEgNE79JFQsBeJYUM5YwteICMwplhImkEHsd1RElAiS0IgJRFNGZIRKQobB4_HdvW0-O-XaotJOKmN4rZrOFdh7SCPIUk8f_tBd09na_65XSUwSlvRqdFTSNs5ZtS72VlfcHgoEi76Aoi-gOBXgA-kx8KWNOvyji-Vbnp-z3z6piGY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chen, Chunhong</creator><creator>Shi, Fangyi</creator><creator>Zhang, Shishi</creator><creator>Su, Yaqiong</creator><creator>Xu, Zheng‐Long</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8483-0532</orcidid></search><sort><creationdate>20220401</creationdate><title>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</title><author>Chen, Chunhong ; Shi, Fangyi ; Zhang, Shishi ; Su, Yaqiong ; Xu, Zheng‐Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Ca ion batteries</topic><topic>Calcium ions</topic><topic>cathode materials</topic><topic>Cathodes</topic><topic>Diffusion barriers</topic><topic>Energy storage</topic><topic>Fluorine</topic><topic>Flux density</topic><topic>full cells</topic><topic>Intercalation</topic><topic>Ionic mobility</topic><topic>Nanotechnology</topic><topic>NASICON structure</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chunhong</creatorcontrib><creatorcontrib>Shi, Fangyi</creatorcontrib><creatorcontrib>Zhang, Shishi</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Xu, Zheng‐Long</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chunhong</au><au>Shi, Fangyi</au><au>Zhang, Shishi</au><au>Su, Yaqiong</au><au>Xu, Zheng‐Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>14</issue><spage>e2107853</spage><epage>n/a</epage><pages>e2107853-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.
The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202107853</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8483-0532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (14), p.e2107853-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2648064089 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Batteries Ca ion batteries Calcium ions cathode materials Cathodes Diffusion barriers Energy storage Fluorine Flux density full cells Intercalation Ionic mobility Nanotechnology NASICON structure Rechargeable batteries Sodium |
title | Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastable%20and%20High%20Energy%20Calcium%20Rechargeable%20Batteries%20Enabled%20by%20Calcium%20Intercalation%20in%20a%20NASICON%20Cathode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Chunhong&rft.date=2022-04-01&rft.volume=18&rft.issue=14&rft.spage=e2107853&rft.epage=n/a&rft.pages=e2107853-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202107853&rft_dat=%3Cproquest_cross%3E2648064089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647537879&rft_id=info:pmid/&rfr_iscdi=true |