Loading…

Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode

Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (14), p.e2107853-n/a
Main Authors: Chen, Chunhong, Shi, Fangyi, Zhang, Shishi, Su, Yaqiong, Xu, Zheng‐Long
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33
cites cdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33
container_end_page n/a
container_issue 14
container_start_page e2107853
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Chen, Chunhong
Shi, Fangyi
Zhang, Shishi
Su, Yaqiong
Xu, Zheng‐Long
description Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes. The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.
doi_str_mv 10.1002/smll.202107853
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648064089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648064089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</originalsourceid><addsrcrecordid>eNqF0U9LwzAcBuAiCs7p1XPAi5fO_GnT9DjLdIO6gXPnkqTZlpG2M2mRfXtTJxt48ZRfkucNgTcI7hEcIQjxk6uMGWGIEUxYTC6CAaKIhJTh9PI0I3gd3Di3g5AgHCWDYL8yreWu5cIowOsSTPVmCya1spsDyLiRuqvAu5JbbjfqBz3ztlVWK-dVf1ACcZaz2t9JbnirmxroGnAwHy9n2WLuSbttSnUbXK25cerudx0Gq5fJRzYN88XrLBvnoSQpJKEgNE79JFQsBeJYUM5YwteICMwplhImkEHsd1RElAiS0IgJRFNGZIRKQobB4_HdvW0-O-XaotJOKmN4rZrOFdh7SCPIUk8f_tBd09na_65XSUwSlvRqdFTSNs5ZtS72VlfcHgoEi76Aoi-gOBXgA-kx8KWNOvyji-Vbnp-z3z6piGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647537879</pqid></control><display><type>article</type><title>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Chunhong ; Shi, Fangyi ; Zhang, Shishi ; Su, Yaqiong ; Xu, Zheng‐Long</creator><creatorcontrib>Chen, Chunhong ; Shi, Fangyi ; Zhang, Shishi ; Su, Yaqiong ; Xu, Zheng‐Long</creatorcontrib><description>Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes. The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202107853</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Ca ion batteries ; Calcium ions ; cathode materials ; Cathodes ; Diffusion barriers ; Energy storage ; Fluorine ; Flux density ; full cells ; Intercalation ; Ionic mobility ; Nanotechnology ; NASICON structure ; Rechargeable batteries ; Sodium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (14), p.e2107853-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</citedby><cites>FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</cites><orcidid>0000-0002-8483-0532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Chunhong</creatorcontrib><creatorcontrib>Shi, Fangyi</creatorcontrib><creatorcontrib>Zhang, Shishi</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Xu, Zheng‐Long</creatorcontrib><title>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes. The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.</description><subject>Batteries</subject><subject>Ca ion batteries</subject><subject>Calcium ions</subject><subject>cathode materials</subject><subject>Cathodes</subject><subject>Diffusion barriers</subject><subject>Energy storage</subject><subject>Fluorine</subject><subject>Flux density</subject><subject>full cells</subject><subject>Intercalation</subject><subject>Ionic mobility</subject><subject>Nanotechnology</subject><subject>NASICON structure</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0U9LwzAcBuAiCs7p1XPAi5fO_GnT9DjLdIO6gXPnkqTZlpG2M2mRfXtTJxt48ZRfkucNgTcI7hEcIQjxk6uMGWGIEUxYTC6CAaKIhJTh9PI0I3gd3Di3g5AgHCWDYL8yreWu5cIowOsSTPVmCya1spsDyLiRuqvAu5JbbjfqBz3ztlVWK-dVf1ACcZaz2t9JbnirmxroGnAwHy9n2WLuSbttSnUbXK25cerudx0Gq5fJRzYN88XrLBvnoSQpJKEgNE79JFQsBeJYUM5YwteICMwplhImkEHsd1RElAiS0IgJRFNGZIRKQobB4_HdvW0-O-XaotJOKmN4rZrOFdh7SCPIUk8f_tBd09na_65XSUwSlvRqdFTSNs5ZtS72VlfcHgoEi76Aoi-gOBXgA-kx8KWNOvyji-Vbnp-z3z6piGY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chen, Chunhong</creator><creator>Shi, Fangyi</creator><creator>Zhang, Shishi</creator><creator>Su, Yaqiong</creator><creator>Xu, Zheng‐Long</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8483-0532</orcidid></search><sort><creationdate>20220401</creationdate><title>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</title><author>Chen, Chunhong ; Shi, Fangyi ; Zhang, Shishi ; Su, Yaqiong ; Xu, Zheng‐Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Ca ion batteries</topic><topic>Calcium ions</topic><topic>cathode materials</topic><topic>Cathodes</topic><topic>Diffusion barriers</topic><topic>Energy storage</topic><topic>Fluorine</topic><topic>Flux density</topic><topic>full cells</topic><topic>Intercalation</topic><topic>Ionic mobility</topic><topic>Nanotechnology</topic><topic>NASICON structure</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chunhong</creatorcontrib><creatorcontrib>Shi, Fangyi</creatorcontrib><creatorcontrib>Zhang, Shishi</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Xu, Zheng‐Long</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chunhong</au><au>Shi, Fangyi</au><au>Zhang, Shishi</au><au>Su, Yaqiong</au><au>Xu, Zheng‐Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>14</issue><spage>e2107853</spage><epage>n/a</epage><pages>e2107853-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Ca‐ion batteries (CIBs) have been considered a promising candidate for the next‐generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)‐typed Na‐vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra‐stable and high‐energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g‐1 at 10 and 500 mA g–1, respectively, and a record‐long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg‐1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high‐power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes. The merits of covalent open framework with large tunnel sites, substantial Na interstitial vacancies, and fluorine‐rich phase indicate Na1V2(PO4)2F3 (N1VPF3) as an excellent candidate for Ca ion storage with high redox potentials. As a proof of concept, the N1VPF3 cathode demonstrates exceptionally high energy density and long‐term cyclic stability in Ca ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202107853</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8483-0532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (14), p.e2107853-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2648064089
source Wiley-Blackwell Read & Publish Collection
subjects Batteries
Ca ion batteries
Calcium ions
cathode materials
Cathodes
Diffusion barriers
Energy storage
Fluorine
Flux density
full cells
Intercalation
Ionic mobility
Nanotechnology
NASICON structure
Rechargeable batteries
Sodium
title Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastable%20and%20High%20Energy%20Calcium%20Rechargeable%20Batteries%20Enabled%20by%20Calcium%20Intercalation%20in%20a%20NASICON%20Cathode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Chunhong&rft.date=2022-04-01&rft.volume=18&rft.issue=14&rft.spage=e2107853&rft.epage=n/a&rft.pages=e2107853-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202107853&rft_dat=%3Cproquest_cross%3E2648064089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3903-b3659390be5cb1a2b6a887af13b2a62cc0708023b26b463b37648b16983c41d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647537879&rft_id=info:pmid/&rfr_iscdi=true