Loading…

Composite piezoelectric transducer with truncated conical endcaps "cymbal"

This paper presents original results obtained in the development of the moonie-type transducers for actuator applications. The moonie-type actuators fill the gap between multilayer and bimorph actuators, but its position-dependent displacement and low generative force are unacceptable for certain ap...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1997-05, Vol.44 (3), p.597-605
Main Authors: Dogan, A., Uchino, K., Newnham, R.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents original results obtained in the development of the moonie-type transducers for actuator applications. The moonie-type actuators fill the gap between multilayer and bimorph actuators, but its position-dependent displacement and low generative force are unacceptable for certain applications. The moonie transducers were modified systematically by using finite element analysis combined with experimental techniques. A new transducer design, named "cymbal transducer", was developed with larger displacement, larger generative forces, and more cost-effective manufacturing. The cymbal transducers consist of a cylindrical ceramic element sandwiched between two truncated conical metal endcaps and can be used as both sensors and actuators. The cymbal actuator exhibits almost 40 times higher displacement than the same size of ceramic element. Effective piezoelectric charge coefficient, Eff. d/sub 33/, of cymbal is roughly 40 times higher than PZT itself.
ISSN:0885-3010
1525-8955
DOI:10.1109/58.658312