Loading…
On Poisson solvers and semi-direct methods for computing area based optical flow
Simchony, Chellappa, and Shao (1990) proposed a semi-direct method for computing area based optical flow. Their method is based on the iterative application of a direct Poisson solver. This method is restricted to Dirichlet boundary conditions, i.e., it is applicable only when velocity vectors at th...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 1994-11, Vol.16 (11), p.1133-1138 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Simchony, Chellappa, and Shao (1990) proposed a semi-direct method for computing area based optical flow. Their method is based on the iterative application of a direct Poisson solver. This method is restricted to Dirichlet boundary conditions, i.e., it is applicable only when velocity vectors at the boundary of the domain are known a priori. The authors show, both experimentally and through analysis, that the semi-direct method converges only for very large smoothness. At such levels of smoothness, the solution is obtained merely by filling in the known boundary values; the data from the image is almost totally ignored. Next, the authors consider the Concus and Golub method (1973), another semi-direct method, for computing optical flow. This method always converges, but the convergence is too slow to be of any practical value. The authors conclude that semi-direct methods are not suited for the computation of area based optical flow.< > |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/34.334395 |