Loading…

Radiation therapy for triple-negative breast cancer: emerging role of microRNAs as biomarkers and radiosensitivity modifiers. A systematic review

Purpose Radiation therapy (RT) for triple-negative breast cancer (TNBC) treatment is currently delivered in the adjuvant setting and is under investigation as a booster of neoadjuvant treatments. However, TNBC radioresistance remains an obstacle, so new biomarkers are needed to select patients for a...

Full description

Saved in:
Bibliographic Details
Published in:Breast cancer research and treatment 2022-06, Vol.193 (2), p.265-279
Main Authors: To, Nhu Hanh, Nguyen, Hoang Quy, Thiolat, Allan, Liu, Bisheng, Cohen, José, Radosevic-Robin, Nina, Belkacemi, Yazid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Radiation therapy (RT) for triple-negative breast cancer (TNBC) treatment is currently delivered in the adjuvant setting and is under investigation as a booster of neoadjuvant treatments. However, TNBC radioresistance remains an obstacle, so new biomarkers are needed to select patients for any integration of RT in the TNBC therapy sequence. MicroRNAs (miRs) are important regulators of gene expression, involved in cancer response to ionizing radiation (IR) and assessable by tumor tissue or liquid biopsy. This systematic review aimed to evaluate the relationships between miRs and response to radiation in TNBC, as well as their potential predictive and prognostic values. Methods A thorough review of studies related to miRs and RT in TNBC was performed on PubMed, EMBASE, and Web of Science. We searched for original English articles that involved dysregulation of miRs in response to IR on TNBC-related preclinical and clinical studies. After a rigorous selection, 44 studies were chosen for further analysis. Results Thirty-five miRs were identified to be TNBC related, out of which 21 were downregulated, 13 upregulated, and 2 had a double-side expression in this cancer. Expression modulation of many of these miRs is radiosensitizing, among which miR-7, -27a, -34a, -122, and let-7 are most studied, still only in experimental models. The miRs reported as most influencing/reflecting TNBC response to IR are miR-7, -27a, -155, -205, -211, and -221, whereas miR-21, -33a, -139-5p, and -210 are associated with TNBC patient outcome after RT. Conclusion miRs are emerging biomarkers and radiosensitizers in TNBC, worth further investigation. Dynamic assessment of circulating miRs could improve monitoring and TNBC RT efficacy, which are of particular interest in the neoadjuvant and the high-risk patients’ settings.
ISSN:0167-6806
1573-7217
DOI:10.1007/s10549-022-06533-3