Loading…
Iodine Conjugated Pt(IV) Nanoparticles for Precise Chemotherapy with Iodine–Pt Guided Computed Tomography Imaging and Biotin-Mediated Tumor-Targeting
Theranostics of platinum (Pt)-based chemotherapy are able to self-track the biodistribution and pharmacokinetics while performing therapeutic effects. Pt-based CT imaging is expected to visualize and monitor the tumor throughout the entire tumor inhibition stage. However, a sufficient Pt concentrati...
Saved in:
Published in: | ACS nano 2022-04, Vol.16 (4), p.6835-6846 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Theranostics of platinum (Pt)-based chemotherapy are able to self-track the biodistribution and pharmacokinetics while performing therapeutic effects. Pt-based CT imaging is expected to visualize and monitor the tumor throughout the entire tumor inhibition stage. However, a sufficient Pt concentration is necessary for CT imaging, which may bring about severe nephrotoxicity. A Bio-Pt-I compound is designed and synthesized by conjugation of iodine and biotin to the structure of Pt and further self-assembles into nanoparticles. The introduction of iodine not only enhances the CT imaging signal with a much lower dose of Pt but also overcomes the resistance of tumor cells to Pt-containing nanomedicine by inhibiting the expression of Bcl-2. Furthermore, biotin-mediated tumor targeting increases drug accumulation in tumors. This work combines CT imaging based self-track with efficient cisplatin-resistance reversion ability, which may promote the clinical transformation of Pt-containing nanomedicine. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.2c01764 |