Loading…

Molecular cloning, characterization and expression analysis of P53 from high latitude fish Phoxinus lagowskii and its response to hypoxia

As an intermediate link between multiple cellular stresses and cellular responses, p53, together with its upstream and downstream regulators and related genes, constitutes a complex network that regulates cellular stresses and cellular responses. However, no studies have investigated p53 in Phoxinus...

Full description

Saved in:
Bibliographic Details
Published in:Fish physiology and biochemistry 2022-06, Vol.48 (3), p.631-644
Main Authors: Wang, Jing, Chen, Xi, Ge, Xinrui, Wang, Zhen, Mu, Weijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As an intermediate link between multiple cellular stresses and cellular responses, p53, together with its upstream and downstream regulators and related genes, constitutes a complex network that regulates cellular stresses and cellular responses. However, no studies have investigated p53 in Phoxinus lagowskii , particularly the expression of p53 under different hypoxic conditions. In the present study, the cDNA of p53 from the Phoxinus lagowskii was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Pl-p53 was 1878 bp, including an open reading frame (ORF) of 1116 bp encoding a polypeptide of 371 amino acids with a predicted molecular weight of 41.22 kDa and a theoretical isoelectric point of 7.38. Quantitative real-time (qRT) PCR assays revealed that Pl-p53 was commonly expressed in all tissues examined, with highest expression in the heart. In addition, we investigated the expression of Pl-p53 in different tissues under different hypoxic conditions. In the short-term hypoxia group, Pl-p53 expression was down-regulated in both the brain and heart. The Pl-p53 expression was significantly elevated at 6 h in the muscle and liver, and was significantly up-regulated at 24 h in spleen. These results suggest that Pl-p53 plays different regulatory roles and provide a theoretical basis for the changes of p53 in fish facing hypoxic environments.
ISSN:0920-1742
1573-5168
DOI:10.1007/s10695-022-01072-6