Loading…

Based on proteomics to explore the mechanism of mecobalamin promoting the repair of injured peripheral nerves

Mecobalamin is commonly used in the adjuvant intervention of various peripheral nerve injuries. Actin cytoskeleton plays a role in the regeneration of myelin and axon. Therefore, the purpose of this study was to explore the possibility of mecobalamin regulating actin cytoskeleton in repairing nerve...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of physiology and pharmacology 2022-06, Vol.100 (6), p.562-572
Main Authors: Xiong, Zong-liang, Wang, Yao, Ma, Xiang-Lin, Zhou, Chong, Jiang, Xiao-wen, Yu, Wen-hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mecobalamin is commonly used in the adjuvant intervention of various peripheral nerve injuries. Actin cytoskeleton plays a role in the regeneration of myelin and axon. Therefore, the purpose of this study was to explore the possibility of mecobalamin regulating actin cytoskeleton in repairing nerve injury. In this study, a crush injury on the right sciatic nerve of two groups of rats (12 in each group) was established. The control group was only given normal saline (i.g.), and the intervention group was given mecobalamin 1 mg/kg (i.g.). The rats were sacrificed on 28th day and the injured nerves were collected for proteomics. The result shows that regulation of actin cytoskeleton pathway changed significantly. The expression of protein Vav1 was verified by Western blot and immunofluorescence. In the intervention group, the nerve fiber structure was complete, the axons were dense and symmetrical, and the myelin sheath was compact and uniform in thickness. The positive rate of myelin basic protein and [beta]III-tubulin was higher than that in the control group. The findings of the study show that mecobalamin regulates the actin cytoskeleton in the repair of nerve damage and upregulates Vav1 in the regulation of actin cytoskeleton pathway.
ISSN:0008-4212
1205-7541
DOI:10.1139/cjpp-2021-0692