Loading…
CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish ( Ictalurus punctatus ) is one of the leading freshwater aquaculture species in the USA, but has low...
Saved in:
Published in: | Marine biotechnology (New York, N.Y.) N.Y.), 2022-06, Vol.24 (3), p.513-523 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3 |
container_end_page | 523 |
container_issue | 3 |
container_start_page | 513 |
container_title | Marine biotechnology (New York, N.Y.) |
container_volume | 24 |
creator | Xing, De Su, Baofeng Li, Shangjia Bangs, Max Creamer, David Coogan, Michael Wang, Jinhai Simora, Rhoda Ma, Xiaoli Hettiarachchi, Darshika Alston, Veronica Wang, Wenwen Johnson, Andrew Lu, Cuiyu Hasin, Tasnuba Qin, Zhenkui Dunham, Rex |
description | Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (
Ictalurus punctatus
) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an
elovl2
transgene isolated from masu salmon (
Oncorhynchus masou
) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P
1
transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (
P
|
doi_str_mv | 10.1007/s10126-022-10110-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2649998455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649998455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhU1poWmSF8hK0M1koUY_HtleBtOkAwkJSboWdyQ5drClqa4UmJfps1btlBa66OqexfcdLpyqOuPsE2esuUDOuFCUCUFL4oyqN9URr6WiQkj19k8W7fvqA-ILK1Ij2VH1vX_YPN4_XPSAHb11doLkLHmK4PHZeYcTkjCQNDpyC5jJI8xL8GR1502I496bMSNZAEM-J24Or7Mg10Ujm2UXw6tD4qkkV5DSnlyayZI--OR8IpMn_Qjeu5n0kIYJR7LamARzjqVwl33JKeP5SfVugBnd6e97XH29-vzUf6E3d9eb_vKGGtGKRDkA37p26AQfpKy3sG0AWtUo6TreWgXC1mKwawvGbu1aAAyWF77tFHNNZ-RxtTr0lre_ZYdJLxMaN8_gXciohaq7rmvr9bqgH_9BX0KOvnxXqJbVtWxUXShxoEwMiNENehenBeJec6Z_TqYPk-kymf41mVZFkgcJC-yfXfxb_R_rByPymiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680443764</pqid></control><display><type>article</type><title>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Xing, De ; Su, Baofeng ; Li, Shangjia ; Bangs, Max ; Creamer, David ; Coogan, Michael ; Wang, Jinhai ; Simora, Rhoda ; Ma, Xiaoli ; Hettiarachchi, Darshika ; Alston, Veronica ; Wang, Wenwen ; Johnson, Andrew ; Lu, Cuiyu ; Hasin, Tasnuba ; Qin, Zhenkui ; Dunham, Rex</creator><creatorcontrib>Xing, De ; Su, Baofeng ; Li, Shangjia ; Bangs, Max ; Creamer, David ; Coogan, Michael ; Wang, Jinhai ; Simora, Rhoda ; Ma, Xiaoli ; Hettiarachchi, Darshika ; Alston, Veronica ; Wang, Wenwen ; Johnson, Andrew ; Lu, Cuiyu ; Hasin, Tasnuba ; Qin, Zhenkui ; Dunham, Rex</creatorcontrib><description>Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (
Ictalurus punctatus
) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an
elovl2
transgene isolated from masu salmon (
Oncorhynchus masou
) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P
1
transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (
P
< 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin-
elovl2
transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (
P
< 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.</description><identifier>ISSN: 1436-2228</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-022-10110-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actin ; Aquaculture ; Biomedical and Life Sciences ; Biosynthesis ; Catfish ; CRISPR ; Deformation effects ; Design optimization ; Docosahexaenoic acid ; Eicosapentaenoic acid ; Engineering ; Fatty acids ; Fish ; Freshwater ; Freshwater & Marine Ecology ; Freshwater aquaculture ; Freshwater fishes ; Gene editing ; Gene expression ; gRNA ; Ictalurus punctatus ; Inland water environment ; Life Sciences ; Microbiology ; Morphometry ; Muscles ; Oncorhynchus masou ; Original Article ; Plasmids ; Polyunsaturated fatty acids ; Salmon ; Tissue ; Transgenic fish ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2022-06, Vol.24 (3), p.513-523</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</citedby><cites>FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</cites><orcidid>0000-0002-6149-6017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2680443764/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2680443764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Xing, De</creatorcontrib><creatorcontrib>Su, Baofeng</creatorcontrib><creatorcontrib>Li, Shangjia</creatorcontrib><creatorcontrib>Bangs, Max</creatorcontrib><creatorcontrib>Creamer, David</creatorcontrib><creatorcontrib>Coogan, Michael</creatorcontrib><creatorcontrib>Wang, Jinhai</creatorcontrib><creatorcontrib>Simora, Rhoda</creatorcontrib><creatorcontrib>Ma, Xiaoli</creatorcontrib><creatorcontrib>Hettiarachchi, Darshika</creatorcontrib><creatorcontrib>Alston, Veronica</creatorcontrib><creatorcontrib>Wang, Wenwen</creatorcontrib><creatorcontrib>Johnson, Andrew</creatorcontrib><creatorcontrib>Lu, Cuiyu</creatorcontrib><creatorcontrib>Hasin, Tasnuba</creatorcontrib><creatorcontrib>Qin, Zhenkui</creatorcontrib><creatorcontrib>Dunham, Rex</creatorcontrib><title>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><description>Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (
Ictalurus punctatus
) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an
elovl2
transgene isolated from masu salmon (
Oncorhynchus masou
) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P
1
transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (
P
< 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin-
elovl2
transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (
P
< 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.</description><subject>Actin</subject><subject>Aquaculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Catfish</subject><subject>CRISPR</subject><subject>Deformation effects</subject><subject>Design optimization</subject><subject>Docosahexaenoic acid</subject><subject>Eicosapentaenoic acid</subject><subject>Engineering</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Freshwater</subject><subject>Freshwater & Marine Ecology</subject><subject>Freshwater aquaculture</subject><subject>Freshwater fishes</subject><subject>Gene editing</subject><subject>Gene expression</subject><subject>gRNA</subject><subject>Ictalurus punctatus</subject><subject>Inland water environment</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Morphometry</subject><subject>Muscles</subject><subject>Oncorhynchus masou</subject><subject>Original Article</subject><subject>Plasmids</subject><subject>Polyunsaturated fatty acids</subject><subject>Salmon</subject><subject>Tissue</subject><subject>Transgenic fish</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kc1q3DAUhU1poWmSF8hK0M1koUY_HtleBtOkAwkJSboWdyQ5drClqa4UmJfps1btlBa66OqexfcdLpyqOuPsE2esuUDOuFCUCUFL4oyqN9URr6WiQkj19k8W7fvqA-ILK1Ij2VH1vX_YPN4_XPSAHb11doLkLHmK4PHZeYcTkjCQNDpyC5jJI8xL8GR1502I496bMSNZAEM-J24Or7Mg10Ujm2UXw6tD4qkkV5DSnlyayZI--OR8IpMn_Qjeu5n0kIYJR7LamARzjqVwl33JKeP5SfVugBnd6e97XH29-vzUf6E3d9eb_vKGGtGKRDkA37p26AQfpKy3sG0AWtUo6TreWgXC1mKwawvGbu1aAAyWF77tFHNNZ-RxtTr0lre_ZYdJLxMaN8_gXciohaq7rmvr9bqgH_9BX0KOvnxXqJbVtWxUXShxoEwMiNENehenBeJec6Z_TqYPk-kymf41mVZFkgcJC-yfXfxb_R_rByPymiM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xing, De</creator><creator>Su, Baofeng</creator><creator>Li, Shangjia</creator><creator>Bangs, Max</creator><creator>Creamer, David</creator><creator>Coogan, Michael</creator><creator>Wang, Jinhai</creator><creator>Simora, Rhoda</creator><creator>Ma, Xiaoli</creator><creator>Hettiarachchi, Darshika</creator><creator>Alston, Veronica</creator><creator>Wang, Wenwen</creator><creator>Johnson, Andrew</creator><creator>Lu, Cuiyu</creator><creator>Hasin, Tasnuba</creator><creator>Qin, Zhenkui</creator><creator>Dunham, Rex</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.F</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6149-6017</orcidid></search><sort><creationdate>20220601</creationdate><title>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</title><author>Xing, De ; Su, Baofeng ; Li, Shangjia ; Bangs, Max ; Creamer, David ; Coogan, Michael ; Wang, Jinhai ; Simora, Rhoda ; Ma, Xiaoli ; Hettiarachchi, Darshika ; Alston, Veronica ; Wang, Wenwen ; Johnson, Andrew ; Lu, Cuiyu ; Hasin, Tasnuba ; Qin, Zhenkui ; Dunham, Rex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Aquaculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Catfish</topic><topic>CRISPR</topic><topic>Deformation effects</topic><topic>Design optimization</topic><topic>Docosahexaenoic acid</topic><topic>Eicosapentaenoic acid</topic><topic>Engineering</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Freshwater</topic><topic>Freshwater & Marine Ecology</topic><topic>Freshwater aquaculture</topic><topic>Freshwater fishes</topic><topic>Gene editing</topic><topic>Gene expression</topic><topic>gRNA</topic><topic>Ictalurus punctatus</topic><topic>Inland water environment</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Morphometry</topic><topic>Muscles</topic><topic>Oncorhynchus masou</topic><topic>Original Article</topic><topic>Plasmids</topic><topic>Polyunsaturated fatty acids</topic><topic>Salmon</topic><topic>Tissue</topic><topic>Transgenic fish</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, De</creatorcontrib><creatorcontrib>Su, Baofeng</creatorcontrib><creatorcontrib>Li, Shangjia</creatorcontrib><creatorcontrib>Bangs, Max</creatorcontrib><creatorcontrib>Creamer, David</creatorcontrib><creatorcontrib>Coogan, Michael</creatorcontrib><creatorcontrib>Wang, Jinhai</creatorcontrib><creatorcontrib>Simora, Rhoda</creatorcontrib><creatorcontrib>Ma, Xiaoli</creatorcontrib><creatorcontrib>Hettiarachchi, Darshika</creatorcontrib><creatorcontrib>Alston, Veronica</creatorcontrib><creatorcontrib>Wang, Wenwen</creatorcontrib><creatorcontrib>Johnson, Andrew</creatorcontrib><creatorcontrib>Lu, Cuiyu</creatorcontrib><creatorcontrib>Hasin, Tasnuba</creatorcontrib><creatorcontrib>Qin, Zhenkui</creatorcontrib><creatorcontrib>Dunham, Rex</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, De</au><au>Su, Baofeng</au><au>Li, Shangjia</au><au>Bangs, Max</au><au>Creamer, David</au><au>Coogan, Michael</au><au>Wang, Jinhai</au><au>Simora, Rhoda</au><au>Ma, Xiaoli</au><au>Hettiarachchi, Darshika</au><au>Alston, Veronica</au><au>Wang, Wenwen</au><au>Johnson, Andrew</au><au>Lu, Cuiyu</au><au>Hasin, Tasnuba</au><au>Qin, Zhenkui</au><au>Dunham, Rex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><spage>513</spage><epage>523</epage><pages>513-523</pages><issn>1436-2228</issn><eissn>1436-2236</eissn><abstract>Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (
Ictalurus punctatus
) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an
elovl2
transgene isolated from masu salmon (
Oncorhynchus masou
) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P
1
transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (
P
< 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin-
elovl2
transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (
P
< 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10126-022-10110-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6149-6017</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-2228 |
ispartof | Marine biotechnology (New York, N.Y.), 2022-06, Vol.24 (3), p.513-523 |
issn | 1436-2228 1436-2236 |
language | eng |
recordid | cdi_proquest_miscellaneous_2649998455 |
source | ABI/INFORM Global (ProQuest); Springer Nature |
subjects | Actin Aquaculture Biomedical and Life Sciences Biosynthesis Catfish CRISPR Deformation effects Design optimization Docosahexaenoic acid Eicosapentaenoic acid Engineering Fatty acids Fish Freshwater Freshwater & Marine Ecology Freshwater aquaculture Freshwater fishes Gene editing Gene expression gRNA Ictalurus punctatus Inland water environment Life Sciences Microbiology Morphometry Muscles Oncorhynchus masou Original Article Plasmids Polyunsaturated fatty acids Salmon Tissue Transgenic fish Zoology |
title | CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9-Mediated%20Transgenesis%20of%20the%20Masu%20Salmon%20(Oncorhynchus%20masou)%20elovl2%20Gene%20Improves%20n-3%20Fatty%20Acid%20Content%20in%20Channel%20Catfish%20(Ictalurus%20punctatus)&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Xing,%20De&rft.date=2022-06-01&rft.volume=24&rft.issue=3&rft.spage=513&rft.epage=523&rft.pages=513-523&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-022-10110-6&rft_dat=%3Cproquest_cross%3E2649998455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680443764&rft_id=info:pmid/&rfr_iscdi=true |