Loading…

CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish ( Ictalurus punctatus ) is one of the leading freshwater aquaculture species in the USA, but has low...

Full description

Saved in:
Bibliographic Details
Published in:Marine biotechnology (New York, N.Y.) N.Y.), 2022-06, Vol.24 (3), p.513-523
Main Authors: Xing, De, Su, Baofeng, Li, Shangjia, Bangs, Max, Creamer, David, Coogan, Michael, Wang, Jinhai, Simora, Rhoda, Ma, Xiaoli, Hettiarachchi, Darshika, Alston, Veronica, Wang, Wenwen, Johnson, Andrew, Lu, Cuiyu, Hasin, Tasnuba, Qin, Zhenkui, Dunham, Rex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3
cites cdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3
container_end_page 523
container_issue 3
container_start_page 513
container_title Marine biotechnology (New York, N.Y.)
container_volume 24
creator Xing, De
Su, Baofeng
Li, Shangjia
Bangs, Max
Creamer, David
Coogan, Michael
Wang, Jinhai
Simora, Rhoda
Ma, Xiaoli
Hettiarachchi, Darshika
Alston, Veronica
Wang, Wenwen
Johnson, Andrew
Lu, Cuiyu
Hasin, Tasnuba
Qin, Zhenkui
Dunham, Rex
description Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish ( Ictalurus punctatus ) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon ( Oncorhynchus masou ) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P 1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish ( P  
doi_str_mv 10.1007/s10126-022-10110-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2649998455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649998455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhU1poWmSF8hK0M1koUY_HtleBtOkAwkJSboWdyQ5drClqa4UmJfps1btlBa66OqexfcdLpyqOuPsE2esuUDOuFCUCUFL4oyqN9URr6WiQkj19k8W7fvqA-ILK1Ij2VH1vX_YPN4_XPSAHb11doLkLHmK4PHZeYcTkjCQNDpyC5jJI8xL8GR1502I496bMSNZAEM-J24Or7Mg10Ujm2UXw6tD4qkkV5DSnlyayZI--OR8IpMn_Qjeu5n0kIYJR7LamARzjqVwl33JKeP5SfVugBnd6e97XH29-vzUf6E3d9eb_vKGGtGKRDkA37p26AQfpKy3sG0AWtUo6TreWgXC1mKwawvGbu1aAAyWF77tFHNNZ-RxtTr0lre_ZYdJLxMaN8_gXciohaq7rmvr9bqgH_9BX0KOvnxXqJbVtWxUXShxoEwMiNENehenBeJec6Z_TqYPk-kymf41mVZFkgcJC-yfXfxb_R_rByPymiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680443764</pqid></control><display><type>article</type><title>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Xing, De ; Su, Baofeng ; Li, Shangjia ; Bangs, Max ; Creamer, David ; Coogan, Michael ; Wang, Jinhai ; Simora, Rhoda ; Ma, Xiaoli ; Hettiarachchi, Darshika ; Alston, Veronica ; Wang, Wenwen ; Johnson, Andrew ; Lu, Cuiyu ; Hasin, Tasnuba ; Qin, Zhenkui ; Dunham, Rex</creator><creatorcontrib>Xing, De ; Su, Baofeng ; Li, Shangjia ; Bangs, Max ; Creamer, David ; Coogan, Michael ; Wang, Jinhai ; Simora, Rhoda ; Ma, Xiaoli ; Hettiarachchi, Darshika ; Alston, Veronica ; Wang, Wenwen ; Johnson, Andrew ; Lu, Cuiyu ; Hasin, Tasnuba ; Qin, Zhenkui ; Dunham, Rex</creatorcontrib><description>Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish ( Ictalurus punctatus ) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon ( Oncorhynchus masou ) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P 1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish ( P  &lt; 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin- elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls ( P  &lt; 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.</description><identifier>ISSN: 1436-2228</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-022-10110-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actin ; Aquaculture ; Biomedical and Life Sciences ; Biosynthesis ; Catfish ; CRISPR ; Deformation effects ; Design optimization ; Docosahexaenoic acid ; Eicosapentaenoic acid ; Engineering ; Fatty acids ; Fish ; Freshwater ; Freshwater &amp; Marine Ecology ; Freshwater aquaculture ; Freshwater fishes ; Gene editing ; Gene expression ; gRNA ; Ictalurus punctatus ; Inland water environment ; Life Sciences ; Microbiology ; Morphometry ; Muscles ; Oncorhynchus masou ; Original Article ; Plasmids ; Polyunsaturated fatty acids ; Salmon ; Tissue ; Transgenic fish ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2022-06, Vol.24 (3), p.513-523</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</citedby><cites>FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</cites><orcidid>0000-0002-6149-6017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2680443764/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2680443764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Xing, De</creatorcontrib><creatorcontrib>Su, Baofeng</creatorcontrib><creatorcontrib>Li, Shangjia</creatorcontrib><creatorcontrib>Bangs, Max</creatorcontrib><creatorcontrib>Creamer, David</creatorcontrib><creatorcontrib>Coogan, Michael</creatorcontrib><creatorcontrib>Wang, Jinhai</creatorcontrib><creatorcontrib>Simora, Rhoda</creatorcontrib><creatorcontrib>Ma, Xiaoli</creatorcontrib><creatorcontrib>Hettiarachchi, Darshika</creatorcontrib><creatorcontrib>Alston, Veronica</creatorcontrib><creatorcontrib>Wang, Wenwen</creatorcontrib><creatorcontrib>Johnson, Andrew</creatorcontrib><creatorcontrib>Lu, Cuiyu</creatorcontrib><creatorcontrib>Hasin, Tasnuba</creatorcontrib><creatorcontrib>Qin, Zhenkui</creatorcontrib><creatorcontrib>Dunham, Rex</creatorcontrib><title>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><description>Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish ( Ictalurus punctatus ) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon ( Oncorhynchus masou ) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P 1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish ( P  &lt; 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin- elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls ( P  &lt; 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.</description><subject>Actin</subject><subject>Aquaculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Catfish</subject><subject>CRISPR</subject><subject>Deformation effects</subject><subject>Design optimization</subject><subject>Docosahexaenoic acid</subject><subject>Eicosapentaenoic acid</subject><subject>Engineering</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Freshwater</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Freshwater aquaculture</subject><subject>Freshwater fishes</subject><subject>Gene editing</subject><subject>Gene expression</subject><subject>gRNA</subject><subject>Ictalurus punctatus</subject><subject>Inland water environment</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Morphometry</subject><subject>Muscles</subject><subject>Oncorhynchus masou</subject><subject>Original Article</subject><subject>Plasmids</subject><subject>Polyunsaturated fatty acids</subject><subject>Salmon</subject><subject>Tissue</subject><subject>Transgenic fish</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kc1q3DAUhU1poWmSF8hK0M1koUY_HtleBtOkAwkJSboWdyQ5drClqa4UmJfps1btlBa66OqexfcdLpyqOuPsE2esuUDOuFCUCUFL4oyqN9URr6WiQkj19k8W7fvqA-ILK1Ij2VH1vX_YPN4_XPSAHb11doLkLHmK4PHZeYcTkjCQNDpyC5jJI8xL8GR1502I496bMSNZAEM-J24Or7Mg10Ujm2UXw6tD4qkkV5DSnlyayZI--OR8IpMn_Qjeu5n0kIYJR7LamARzjqVwl33JKeP5SfVugBnd6e97XH29-vzUf6E3d9eb_vKGGtGKRDkA37p26AQfpKy3sG0AWtUo6TreWgXC1mKwawvGbu1aAAyWF77tFHNNZ-RxtTr0lre_ZYdJLxMaN8_gXciohaq7rmvr9bqgH_9BX0KOvnxXqJbVtWxUXShxoEwMiNENehenBeJec6Z_TqYPk-kymf41mVZFkgcJC-yfXfxb_R_rByPymiM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xing, De</creator><creator>Su, Baofeng</creator><creator>Li, Shangjia</creator><creator>Bangs, Max</creator><creator>Creamer, David</creator><creator>Coogan, Michael</creator><creator>Wang, Jinhai</creator><creator>Simora, Rhoda</creator><creator>Ma, Xiaoli</creator><creator>Hettiarachchi, Darshika</creator><creator>Alston, Veronica</creator><creator>Wang, Wenwen</creator><creator>Johnson, Andrew</creator><creator>Lu, Cuiyu</creator><creator>Hasin, Tasnuba</creator><creator>Qin, Zhenkui</creator><creator>Dunham, Rex</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.F</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6149-6017</orcidid></search><sort><creationdate>20220601</creationdate><title>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</title><author>Xing, De ; Su, Baofeng ; Li, Shangjia ; Bangs, Max ; Creamer, David ; Coogan, Michael ; Wang, Jinhai ; Simora, Rhoda ; Ma, Xiaoli ; Hettiarachchi, Darshika ; Alston, Veronica ; Wang, Wenwen ; Johnson, Andrew ; Lu, Cuiyu ; Hasin, Tasnuba ; Qin, Zhenkui ; Dunham, Rex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Aquaculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Catfish</topic><topic>CRISPR</topic><topic>Deformation effects</topic><topic>Design optimization</topic><topic>Docosahexaenoic acid</topic><topic>Eicosapentaenoic acid</topic><topic>Engineering</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Freshwater</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Freshwater aquaculture</topic><topic>Freshwater fishes</topic><topic>Gene editing</topic><topic>Gene expression</topic><topic>gRNA</topic><topic>Ictalurus punctatus</topic><topic>Inland water environment</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Morphometry</topic><topic>Muscles</topic><topic>Oncorhynchus masou</topic><topic>Original Article</topic><topic>Plasmids</topic><topic>Polyunsaturated fatty acids</topic><topic>Salmon</topic><topic>Tissue</topic><topic>Transgenic fish</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, De</creatorcontrib><creatorcontrib>Su, Baofeng</creatorcontrib><creatorcontrib>Li, Shangjia</creatorcontrib><creatorcontrib>Bangs, Max</creatorcontrib><creatorcontrib>Creamer, David</creatorcontrib><creatorcontrib>Coogan, Michael</creatorcontrib><creatorcontrib>Wang, Jinhai</creatorcontrib><creatorcontrib>Simora, Rhoda</creatorcontrib><creatorcontrib>Ma, Xiaoli</creatorcontrib><creatorcontrib>Hettiarachchi, Darshika</creatorcontrib><creatorcontrib>Alston, Veronica</creatorcontrib><creatorcontrib>Wang, Wenwen</creatorcontrib><creatorcontrib>Johnson, Andrew</creatorcontrib><creatorcontrib>Lu, Cuiyu</creatorcontrib><creatorcontrib>Hasin, Tasnuba</creatorcontrib><creatorcontrib>Qin, Zhenkui</creatorcontrib><creatorcontrib>Dunham, Rex</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, De</au><au>Su, Baofeng</au><au>Li, Shangjia</au><au>Bangs, Max</au><au>Creamer, David</au><au>Coogan, Michael</au><au>Wang, Jinhai</au><au>Simora, Rhoda</au><au>Ma, Xiaoli</au><au>Hettiarachchi, Darshika</au><au>Alston, Veronica</au><au>Wang, Wenwen</au><au>Johnson, Andrew</au><au>Lu, Cuiyu</au><au>Hasin, Tasnuba</au><au>Qin, Zhenkui</au><au>Dunham, Rex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><spage>513</spage><epage>523</epage><pages>513-523</pages><issn>1436-2228</issn><eissn>1436-2236</eissn><abstract>Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish ( Ictalurus punctatus ) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon ( Oncorhynchus masou ) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P 1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish ( P  &lt; 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin- elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls ( P  &lt; 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10126-022-10110-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6149-6017</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-2228
ispartof Marine biotechnology (New York, N.Y.), 2022-06, Vol.24 (3), p.513-523
issn 1436-2228
1436-2236
language eng
recordid cdi_proquest_miscellaneous_2649998455
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Actin
Aquaculture
Biomedical and Life Sciences
Biosynthesis
Catfish
CRISPR
Deformation effects
Design optimization
Docosahexaenoic acid
Eicosapentaenoic acid
Engineering
Fatty acids
Fish
Freshwater
Freshwater & Marine Ecology
Freshwater aquaculture
Freshwater fishes
Gene editing
Gene expression
gRNA
Ictalurus punctatus
Inland water environment
Life Sciences
Microbiology
Morphometry
Muscles
Oncorhynchus masou
Original Article
Plasmids
Polyunsaturated fatty acids
Salmon
Tissue
Transgenic fish
Zoology
title CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9-Mediated%20Transgenesis%20of%20the%20Masu%20Salmon%20(Oncorhynchus%20masou)%20elovl2%20Gene%20Improves%20n-3%20Fatty%20Acid%20Content%20in%20Channel%20Catfish%20(Ictalurus%20punctatus)&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Xing,%20De&rft.date=2022-06-01&rft.volume=24&rft.issue=3&rft.spage=513&rft.epage=523&rft.pages=513-523&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-022-10110-6&rft_dat=%3Cproquest_cross%3E2649998455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-1aa1be8f921f334bab7aa86763e918d6a2d42fd5dacdbd52aafd1e8f8960e79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680443764&rft_id=info:pmid/&rfr_iscdi=true