Loading…

Long-range parameter optimization for a better description of potential energy surfaces using Density Functional Theory

The advance of computing and the development of modern quantum chemistry models such as Density Functional Theory (DFT) have allowed scientists to perform fast in silico studies with accurate results. It also allowed for the achievement of empirically unattainable quantities such as Potential Energy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2022-05, Vol.28 (5), p.121-121, Article 121
Main Authors: Bispo, Matheus de Oliveira, Filho, Demétrio Antônio da Silva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3
cites cdi_FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3
container_end_page 121
container_issue 5
container_start_page 121
container_title Journal of molecular modeling
container_volume 28
creator Bispo, Matheus de Oliveira
Filho, Demétrio Antônio da Silva
description The advance of computing and the development of modern quantum chemistry models such as Density Functional Theory (DFT) have allowed scientists to perform fast in silico studies with accurate results. It also allowed for the achievement of empirically unattainable quantities such as Potential Energy Surfaces (PES), a fundamental construct in various applications, such as the study of weakly bound systems. One of DFT’s current weaknesses is a reliable description of PESs, due to a lack of suitable exchange-correlation functionals. In general, other post-Hartree-Fock methods are employed, such as n th-order Møller-Plesset’s Perturbation Theory (MPn) or Coupled Cluster Theory (CCSD(T)) with large basis sets. Despite producing good results, these methods demand much computational power when applied to large systems. This work presents a novel approach of PES description of the H 2 O 2 –Kr system using DFT by optimizing a long-range parameter present in some DFT functionals, obtaining results similar to those of the MPn methods with somewhat less computational time necessary. Graphical Abstract By optimizing the omega value of certain functionals, DFT can describe PESs with accuracy comparable to MP4 methods
doi_str_mv 10.1007/s00894-022-05083-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2651691710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651691710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3</originalsourceid><addsrcrecordid>eNp9kUFvFCEYhonR2E3tH_BgSLx4oX4wA8wcTbVqsomXeiYM87HS7AwjMDHbX192t2riwRMk7_O-kDyEvOZwzQH0-wzQ9S0DIRhI6BrGn5EN9G3HJIjmOdlwxYGJvoULcpXzPQBwIZUU4iW5aGQrlOJqQ35t47xjyc47pItNdsKCicalhCk82BLiTH1M1NIByzEZMbsUllMQPV1iwbkEu6c4Y9odaF6Ttw4zXXOYd_QjzjmUA71dZ3fsVPDuB8Z0eEVeeLvPePV0XpLvt5_ubr6w7bfPX28-bJlrtCxMgeiUGkYLfhxsBzC2fhjQSXTjKKXWg643pzVwL0bwCA57OUpQPeKgXXNJ3p13lxR_rpiLmUJ2uN_bGeOajVCSq55rDhV9-w96H9dUv3yioNU9b1WlxJlyKeac0Jslhcmmg-FgjmbM2YypZszJjOG19OZpeh0mHP9UfnuoQHMGco2qi_T37f_MPgKTHpvp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650479146</pqid></control><display><type>article</type><title>Long-range parameter optimization for a better description of potential energy surfaces using Density Functional Theory</title><source>Springer Nature</source><creator>Bispo, Matheus de Oliveira ; Filho, Demétrio Antônio da Silva</creator><creatorcontrib>Bispo, Matheus de Oliveira ; Filho, Demétrio Antônio da Silva</creatorcontrib><description>The advance of computing and the development of modern quantum chemistry models such as Density Functional Theory (DFT) have allowed scientists to perform fast in silico studies with accurate results. It also allowed for the achievement of empirically unattainable quantities such as Potential Energy Surfaces (PES), a fundamental construct in various applications, such as the study of weakly bound systems. One of DFT’s current weaknesses is a reliable description of PESs, due to a lack of suitable exchange-correlation functionals. In general, other post-Hartree-Fock methods are employed, such as n th-order Møller-Plesset’s Perturbation Theory (MPn) or Coupled Cluster Theory (CCSD(T)) with large basis sets. Despite producing good results, these methods demand much computational power when applied to large systems. This work presents a novel approach of PES description of the H 2 O 2 –Kr system using DFT by optimizing a long-range parameter present in some DFT functionals, obtaining results similar to those of the MPn methods with somewhat less computational time necessary. Graphical Abstract By optimizing the omega value of certain functionals, DFT can describe PESs with accuracy comparable to MP4 methods</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-022-05083-1</identifier><identifier>PMID: 35426616</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Computing time ; Density functional theory ; Hydrogen peroxide ; Molecular Medicine ; Optimization ; Original Paper ; Parameters ; Perturbation theory ; Potential energy ; Production methods ; Quantum chemistry ; Theoretical and Computational Chemistry ; XXI-Brazilian Symposium of Theoretical Chemistry (SBQT2021)</subject><ispartof>Journal of molecular modeling, 2022-05, Vol.28 (5), p.121-121, Article 121</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3</citedby><cites>FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3</cites><orcidid>0000-0002-7103-4780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35426616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bispo, Matheus de Oliveira</creatorcontrib><creatorcontrib>Filho, Demétrio Antônio da Silva</creatorcontrib><title>Long-range parameter optimization for a better description of potential energy surfaces using Density Functional Theory</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>The advance of computing and the development of modern quantum chemistry models such as Density Functional Theory (DFT) have allowed scientists to perform fast in silico studies with accurate results. It also allowed for the achievement of empirically unattainable quantities such as Potential Energy Surfaces (PES), a fundamental construct in various applications, such as the study of weakly bound systems. One of DFT’s current weaknesses is a reliable description of PESs, due to a lack of suitable exchange-correlation functionals. In general, other post-Hartree-Fock methods are employed, such as n th-order Møller-Plesset’s Perturbation Theory (MPn) or Coupled Cluster Theory (CCSD(T)) with large basis sets. Despite producing good results, these methods demand much computational power when applied to large systems. This work presents a novel approach of PES description of the H 2 O 2 –Kr system using DFT by optimizing a long-range parameter present in some DFT functionals, obtaining results similar to those of the MPn methods with somewhat less computational time necessary. Graphical Abstract By optimizing the omega value of certain functionals, DFT can describe PESs with accuracy comparable to MP4 methods</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Computing time</subject><subject>Density functional theory</subject><subject>Hydrogen peroxide</subject><subject>Molecular Medicine</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Perturbation theory</subject><subject>Potential energy</subject><subject>Production methods</subject><subject>Quantum chemistry</subject><subject>Theoretical and Computational Chemistry</subject><subject>XXI-Brazilian Symposium of Theoretical Chemistry (SBQT2021)</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvFCEYhonR2E3tH_BgSLx4oX4wA8wcTbVqsomXeiYM87HS7AwjMDHbX192t2riwRMk7_O-kDyEvOZwzQH0-wzQ9S0DIRhI6BrGn5EN9G3HJIjmOdlwxYGJvoULcpXzPQBwIZUU4iW5aGQrlOJqQ35t47xjyc47pItNdsKCicalhCk82BLiTH1M1NIByzEZMbsUllMQPV1iwbkEu6c4Y9odaF6Ttw4zXXOYd_QjzjmUA71dZ3fsVPDuB8Z0eEVeeLvPePV0XpLvt5_ubr6w7bfPX28-bJlrtCxMgeiUGkYLfhxsBzC2fhjQSXTjKKXWg643pzVwL0bwCA57OUpQPeKgXXNJ3p13lxR_rpiLmUJ2uN_bGeOajVCSq55rDhV9-w96H9dUv3yioNU9b1WlxJlyKeac0Jslhcmmg-FgjmbM2YypZszJjOG19OZpeh0mHP9UfnuoQHMGco2qi_T37f_MPgKTHpvp</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bispo, Matheus de Oliveira</creator><creator>Filho, Demétrio Antônio da Silva</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7103-4780</orcidid></search><sort><creationdate>20220501</creationdate><title>Long-range parameter optimization for a better description of potential energy surfaces using Density Functional Theory</title><author>Bispo, Matheus de Oliveira ; Filho, Demétrio Antônio da Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Computing time</topic><topic>Density functional theory</topic><topic>Hydrogen peroxide</topic><topic>Molecular Medicine</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Perturbation theory</topic><topic>Potential energy</topic><topic>Production methods</topic><topic>Quantum chemistry</topic><topic>Theoretical and Computational Chemistry</topic><topic>XXI-Brazilian Symposium of Theoretical Chemistry (SBQT2021)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bispo, Matheus de Oliveira</creatorcontrib><creatorcontrib>Filho, Demétrio Antônio da Silva</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bispo, Matheus de Oliveira</au><au>Filho, Demétrio Antônio da Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-range parameter optimization for a better description of potential energy surfaces using Density Functional Theory</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>28</volume><issue>5</issue><spage>121</spage><epage>121</epage><pages>121-121</pages><artnum>121</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>The advance of computing and the development of modern quantum chemistry models such as Density Functional Theory (DFT) have allowed scientists to perform fast in silico studies with accurate results. It also allowed for the achievement of empirically unattainable quantities such as Potential Energy Surfaces (PES), a fundamental construct in various applications, such as the study of weakly bound systems. One of DFT’s current weaknesses is a reliable description of PESs, due to a lack of suitable exchange-correlation functionals. In general, other post-Hartree-Fock methods are employed, such as n th-order Møller-Plesset’s Perturbation Theory (MPn) or Coupled Cluster Theory (CCSD(T)) with large basis sets. Despite producing good results, these methods demand much computational power when applied to large systems. This work presents a novel approach of PES description of the H 2 O 2 –Kr system using DFT by optimizing a long-range parameter present in some DFT functionals, obtaining results similar to those of the MPn methods with somewhat less computational time necessary. Graphical Abstract By optimizing the omega value of certain functionals, DFT can describe PESs with accuracy comparable to MP4 methods</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35426616</pmid><doi>10.1007/s00894-022-05083-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7103-4780</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2022-05, Vol.28 (5), p.121-121, Article 121
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2651691710
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Computing time
Density functional theory
Hydrogen peroxide
Molecular Medicine
Optimization
Original Paper
Parameters
Perturbation theory
Potential energy
Production methods
Quantum chemistry
Theoretical and Computational Chemistry
XXI-Brazilian Symposium of Theoretical Chemistry (SBQT2021)
title Long-range parameter optimization for a better description of potential energy surfaces using Density Functional Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-range%20parameter%20optimization%20for%20a%20better%20description%20of%20potential%20energy%20surfaces%20using%20Density%20Functional%20Theory&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Bispo,%20Matheus%20de%20Oliveira&rft.date=2022-05-01&rft.volume=28&rft.issue=5&rft.spage=121&rft.epage=121&rft.pages=121-121&rft.artnum=121&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-022-05083-1&rft_dat=%3Cproquest_cross%3E2651691710%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-602866bda0fdba800d4fbbec5ecdd5577b7ecdc7701f2d0fe0ce95d5069eeb7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650479146&rft_id=info:pmid/35426616&rfr_iscdi=true