Loading…
Design of a new light curable starch-based hydrogel drug delivery system to improve the release rate of quercetin as a poorly water-soluble drug
In spite of quercetin advantages, its utilization as a cancer drug is confined due to its very low water solubility and bioavailability. Accordingly, we prepared a biodegradable starch-based hydrogel, using a new technique to control and improve quercetin release and bioavailability. For this purpos...
Saved in:
Published in: | European journal of pharmaceutical sciences 2022-07, Vol.174, p.106191-106191, Article 106191 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In spite of quercetin advantages, its utilization as a cancer drug is confined due to its very low water solubility and bioavailability. Accordingly, we prepared a biodegradable starch-based hydrogel, using a new technique to control and improve quercetin release and bioavailability. For this purpose, the molecular structure of starch was modified by polyethylene glycol/acrylate and Fe3O4 nanoparticles were used to enhance mechanical properties of hydrogel. In order to prepare the final hydrogel drug carrier, the modified starch was directly mixed with quercetin and other additives in different ratios and cured under blue light. Synthesis confirmation and structural properties of the modified starch, silanized and pure Fe3O4 nanoparticles and final hydrogel were studied using 1H NMR, FT-IR, SEM, XRD, TGA, VSM and DLS analyses. We improved in vitro drug release to 56.62%, while the maximum release of quercetin from the starch-based hydrogel in our previous study was only 27% (Doosti et al., 2019).
[Display omitted] |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2022.106191 |