Loading…

An ultrasensitive electrochemical sensing platform based on silver nanoparticle-anchored 3D reduced graphene oxide for rifampicin detection

A facile strategy has been reported to anchor silver nanoparticles (Ag NPs) onto three-dimensional reduced graphene oxide (3D rGO) via a green and simple method. An accurate and reliable electrochemical sensing platform based on Ag NPs/3D rGO was designed for the ultrasensitive detection of rifampic...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2022-05, Vol.147 (1), p.2156-2163
Main Authors: Zhang, Qing, Ma, Shangshang, Zhuo, Xin, Wang, Cong, Wang, Hongyan, Xing, Yuying, Xue, Qingyuan, Zhang, Keying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile strategy has been reported to anchor silver nanoparticles (Ag NPs) onto three-dimensional reduced graphene oxide (3D rGO) via a green and simple method. An accurate and reliable electrochemical sensing platform based on Ag NPs/3D rGO was designed for the ultrasensitive detection of rifampicin (RIF). The morphology and features of Ag NPs/3D rGO were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and electrochemical measurements. The interface of the modified electrode presented effective electrical activity for the analysis of RIF due to the large electrochemically active surface area and excellent electron transport ability. The sensor exhibited a good linear relationship in the range of 0.01 nM-45 μM and a low detection limit of 0.810 nM (S/N = 3). Crucially, the fabricated Ag NPs/3D rGO sensor was successfully utilized to assess RIF in human blood, drug and aquatic product samples. This sensing platform exhibited outstanding electrochemical performance for RIF detection and showed great potential application in clinical diagnosis, pharmaceutical and food-related fields. An accurate and reliable electrochemical sensor based on Ag NPs/3D rGO composites for ultrasensitive determination of rifampicin (RIF) is proposed and shows great potential application in clinical diagnosis, pharmaceuticals and food-related fields.
ISSN:0003-2654
1364-5528
DOI:10.1039/d2an00452f