Loading…

Animal Models of Femur Head Necrosis for Tissue Engineering and Biomaterials Research

Femur head necrosis, also known as osteonecrosis of the femoral head (ONFH), is a widespread disabling pathology mostly affecting young and middle-aged population and one of the major causes of total hip arthroplasty in the elderly. Currently, there are limited number of different clinical or medica...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part C, Methods Methods, 2022-05, Vol.28 (5), p.214-227
Main Authors: Ma, Jiali, Sun, Yuting, Zhou, Huan, Li, Xinle, Bai, Yanjie, Liang, Chunyong, Jia, Xiaowei, Zhang, Ping, Yang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Femur head necrosis, also known as osteonecrosis of the femoral head (ONFH), is a widespread disabling pathology mostly affecting young and middle-aged population and one of the major causes of total hip arthroplasty in the elderly. Currently, there are limited number of different clinical or medication options for the treatment or the reversal of progressive ONFH, but their clinical outcomes are neither satisfactory nor consistent. In pursuit of more reliable therapeutic strategies for ONFH, including recently emerged tissue engineering and biomaterials approaches, in vivo animal models are extremely important for therapeutic efficacy evaluation and mechanistic exploration. Based on the better understanding of pathogenesis of ONFH, animal modeling method has evolved into three major routes, including steroid-, alcohol-, and injury/trauma-induced osteonecrosis, respectively. There is no consensus yet on a standardized ONFH animal model for tissue engineering and biomaterial research; therefore, appropriate animal modeling method should be carefully selected depending on research purposes and scientific hypotheses. In this work, mainstream types of ONFH animal model and their modeling techniques are summarized, showing both merits and demerits for each. In addition, current studies and experimental techniques of evaluating therapeutic efficacy on the treatment of ONFH using animal models are also summarized, along with discussions on future directions related to tissue engineering and biomaterial research.
ISSN:1937-3384
1937-3392
DOI:10.1089/ten.tec.2022.0043