Loading…
A presynaptic phosphosignaling hub for lasting homeostatic plasticity
Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation statu...
Saved in:
Published in: | Cell reports (Cambridge) 2022-04, Vol.39 (3), p.110696-110696, Article 110696 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3 |
container_end_page | 110696 |
container_issue | 3 |
container_start_page | 110696 |
container_title | Cell reports (Cambridge) |
container_volume | 39 |
creator | Müller, Johannes Alexander Betzin, Julia Santos-Tejedor, Jorge Mayer, Annika Oprişoreanu, Ana-Maria Engholm-Keller, Kasper Paulußen, Isabelle Gulakova, Polina McGovern, Terrence Daniel Gschossman, Lena Johanna Schönhense, Eva Wark, Jesse R. Lamprecht, Alf Becker, Albert J. Waardenberg, Ashley J. Graham, Mark E. Dietrich, Dirk Schoch, Susanne |
description | Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
[Display omitted]
•RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP
The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength. |
doi_str_mv | 10.1016/j.celrep.2022.110696 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2653268982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124722004545</els_id><sourcerecordid>2653268982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQgIMobsz9ByJ99KU1l7Zp-yKMMX_AwBd9Dml63TLapiatsP_edp3ik4EjyfHdHfcRcgs0AAr84RAorCy2AaOMBQCUZ_yCzBkD8IFFyeWf94wsnTvQ4XAKkEXXZBbGURRCQudks_Jai-7YyLbTymv3xo2hd42sdLPz9n3ulcZ6lXTd6W9qNK6TJ_iUVLo73pCrUlYOl-d7QT6eNu_rF3_79vy6Xm19FdG08zlHDgBJCoxnjEul8pwXOGwkQ1qwLI2TCBkr0lypuOAYS0w54IhAGTIVLsj91Le15rNH14lau8FEJRs0vROMxyHjaZayAY0mVFnjnMVStFbX0h4FUDE6FAcxORSjQzE5HMruzhP6vMbit-jH2AA8TgAOe35ptMIpjY3CQltUnSiM_n_CN4tghD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653268982</pqid></control><display><type>article</type><title>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Müller, Johannes Alexander ; Betzin, Julia ; Santos-Tejedor, Jorge ; Mayer, Annika ; Oprişoreanu, Ana-Maria ; Engholm-Keller, Kasper ; Paulußen, Isabelle ; Gulakova, Polina ; McGovern, Terrence Daniel ; Gschossman, Lena Johanna ; Schönhense, Eva ; Wark, Jesse R. ; Lamprecht, Alf ; Becker, Albert J. ; Waardenberg, Ashley J. ; Graham, Mark E. ; Dietrich, Dirk ; Schoch, Susanne</creator><creatorcontrib>Müller, Johannes Alexander ; Betzin, Julia ; Santos-Tejedor, Jorge ; Mayer, Annika ; Oprişoreanu, Ana-Maria ; Engholm-Keller, Kasper ; Paulußen, Isabelle ; Gulakova, Polina ; McGovern, Terrence Daniel ; Gschossman, Lena Johanna ; Schönhense, Eva ; Wark, Jesse R. ; Lamprecht, Alf ; Becker, Albert J. ; Waardenberg, Ashley J. ; Graham, Mark E. ; Dietrich, Dirk ; Schoch, Susanne</creatorcontrib><description>Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
[Display omitted]
•RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP
The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2022.110696</identifier><identifier>PMID: 35443170</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active zone ; Animals ; GTP-Binding Proteins - metabolism ; Homeostasis - physiology ; homeostatic plasticity ; KinSwing ; Mammals - metabolism ; Neuronal Plasticity - physiology ; phosphoproteomics ; phosphorylation ; presynaptic plasticity ; Presynaptic Terminals - metabolism ; RIM1 ; SRSF protein kinase 2 ; Synapses - metabolism ; synaptic transmission ; Synaptic Transmission - physiology ; Synaptic Vesicles - metabolism ; vesicle release</subject><ispartof>Cell reports (Cambridge), 2022-04, Vol.39 (3), p.110696-110696, Article 110696</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</citedby><cites>FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</cites><orcidid>0000-0002-9382-7490 ; 0000-0003-2940-8168 ; 0000-0002-9643-1264 ; 0000-0002-5482-6460 ; 0000-0002-7290-1217 ; 0000-0001-7931-0316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35443170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Johannes Alexander</creatorcontrib><creatorcontrib>Betzin, Julia</creatorcontrib><creatorcontrib>Santos-Tejedor, Jorge</creatorcontrib><creatorcontrib>Mayer, Annika</creatorcontrib><creatorcontrib>Oprişoreanu, Ana-Maria</creatorcontrib><creatorcontrib>Engholm-Keller, Kasper</creatorcontrib><creatorcontrib>Paulußen, Isabelle</creatorcontrib><creatorcontrib>Gulakova, Polina</creatorcontrib><creatorcontrib>McGovern, Terrence Daniel</creatorcontrib><creatorcontrib>Gschossman, Lena Johanna</creatorcontrib><creatorcontrib>Schönhense, Eva</creatorcontrib><creatorcontrib>Wark, Jesse R.</creatorcontrib><creatorcontrib>Lamprecht, Alf</creatorcontrib><creatorcontrib>Becker, Albert J.</creatorcontrib><creatorcontrib>Waardenberg, Ashley J.</creatorcontrib><creatorcontrib>Graham, Mark E.</creatorcontrib><creatorcontrib>Dietrich, Dirk</creatorcontrib><creatorcontrib>Schoch, Susanne</creatorcontrib><title>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
[Display omitted]
•RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP
The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.</description><subject>active zone</subject><subject>Animals</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Homeostasis - physiology</subject><subject>homeostatic plasticity</subject><subject>KinSwing</subject><subject>Mammals - metabolism</subject><subject>Neuronal Plasticity - physiology</subject><subject>phosphoproteomics</subject><subject>phosphorylation</subject><subject>presynaptic plasticity</subject><subject>Presynaptic Terminals - metabolism</subject><subject>RIM1</subject><subject>SRSF protein kinase 2</subject><subject>Synapses - metabolism</subject><subject>synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles - metabolism</subject><subject>vesicle release</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQgIMobsz9ByJ99KU1l7Zp-yKMMX_AwBd9Dml63TLapiatsP_edp3ik4EjyfHdHfcRcgs0AAr84RAorCy2AaOMBQCUZ_yCzBkD8IFFyeWf94wsnTvQ4XAKkEXXZBbGURRCQudks_Jai-7YyLbTymv3xo2hd42sdLPz9n3ulcZ6lXTd6W9qNK6TJ_iUVLo73pCrUlYOl-d7QT6eNu_rF3_79vy6Xm19FdG08zlHDgBJCoxnjEul8pwXOGwkQ1qwLI2TCBkr0lypuOAYS0w54IhAGTIVLsj91Le15rNH14lau8FEJRs0vROMxyHjaZayAY0mVFnjnMVStFbX0h4FUDE6FAcxORSjQzE5HMruzhP6vMbit-jH2AA8TgAOe35ptMIpjY3CQltUnSiM_n_CN4tghD0</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Müller, Johannes Alexander</creator><creator>Betzin, Julia</creator><creator>Santos-Tejedor, Jorge</creator><creator>Mayer, Annika</creator><creator>Oprişoreanu, Ana-Maria</creator><creator>Engholm-Keller, Kasper</creator><creator>Paulußen, Isabelle</creator><creator>Gulakova, Polina</creator><creator>McGovern, Terrence Daniel</creator><creator>Gschossman, Lena Johanna</creator><creator>Schönhense, Eva</creator><creator>Wark, Jesse R.</creator><creator>Lamprecht, Alf</creator><creator>Becker, Albert J.</creator><creator>Waardenberg, Ashley J.</creator><creator>Graham, Mark E.</creator><creator>Dietrich, Dirk</creator><creator>Schoch, Susanne</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9382-7490</orcidid><orcidid>https://orcid.org/0000-0003-2940-8168</orcidid><orcidid>https://orcid.org/0000-0002-9643-1264</orcidid><orcidid>https://orcid.org/0000-0002-5482-6460</orcidid><orcidid>https://orcid.org/0000-0002-7290-1217</orcidid><orcidid>https://orcid.org/0000-0001-7931-0316</orcidid></search><sort><creationdate>20220419</creationdate><title>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</title><author>Müller, Johannes Alexander ; Betzin, Julia ; Santos-Tejedor, Jorge ; Mayer, Annika ; Oprişoreanu, Ana-Maria ; Engholm-Keller, Kasper ; Paulußen, Isabelle ; Gulakova, Polina ; McGovern, Terrence Daniel ; Gschossman, Lena Johanna ; Schönhense, Eva ; Wark, Jesse R. ; Lamprecht, Alf ; Becker, Albert J. ; Waardenberg, Ashley J. ; Graham, Mark E. ; Dietrich, Dirk ; Schoch, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active zone</topic><topic>Animals</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Homeostasis - physiology</topic><topic>homeostatic plasticity</topic><topic>KinSwing</topic><topic>Mammals - metabolism</topic><topic>Neuronal Plasticity - physiology</topic><topic>phosphoproteomics</topic><topic>phosphorylation</topic><topic>presynaptic plasticity</topic><topic>Presynaptic Terminals - metabolism</topic><topic>RIM1</topic><topic>SRSF protein kinase 2</topic><topic>Synapses - metabolism</topic><topic>synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles - metabolism</topic><topic>vesicle release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Johannes Alexander</creatorcontrib><creatorcontrib>Betzin, Julia</creatorcontrib><creatorcontrib>Santos-Tejedor, Jorge</creatorcontrib><creatorcontrib>Mayer, Annika</creatorcontrib><creatorcontrib>Oprişoreanu, Ana-Maria</creatorcontrib><creatorcontrib>Engholm-Keller, Kasper</creatorcontrib><creatorcontrib>Paulußen, Isabelle</creatorcontrib><creatorcontrib>Gulakova, Polina</creatorcontrib><creatorcontrib>McGovern, Terrence Daniel</creatorcontrib><creatorcontrib>Gschossman, Lena Johanna</creatorcontrib><creatorcontrib>Schönhense, Eva</creatorcontrib><creatorcontrib>Wark, Jesse R.</creatorcontrib><creatorcontrib>Lamprecht, Alf</creatorcontrib><creatorcontrib>Becker, Albert J.</creatorcontrib><creatorcontrib>Waardenberg, Ashley J.</creatorcontrib><creatorcontrib>Graham, Mark E.</creatorcontrib><creatorcontrib>Dietrich, Dirk</creatorcontrib><creatorcontrib>Schoch, Susanne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Johannes Alexander</au><au>Betzin, Julia</au><au>Santos-Tejedor, Jorge</au><au>Mayer, Annika</au><au>Oprişoreanu, Ana-Maria</au><au>Engholm-Keller, Kasper</au><au>Paulußen, Isabelle</au><au>Gulakova, Polina</au><au>McGovern, Terrence Daniel</au><au>Gschossman, Lena Johanna</au><au>Schönhense, Eva</au><au>Wark, Jesse R.</au><au>Lamprecht, Alf</au><au>Becker, Albert J.</au><au>Waardenberg, Ashley J.</au><au>Graham, Mark E.</au><au>Dietrich, Dirk</au><au>Schoch, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>39</volume><issue>3</issue><spage>110696</spage><epage>110696</epage><pages>110696-110696</pages><artnum>110696</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
[Display omitted]
•RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP
The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35443170</pmid><doi>10.1016/j.celrep.2022.110696</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9382-7490</orcidid><orcidid>https://orcid.org/0000-0003-2940-8168</orcidid><orcidid>https://orcid.org/0000-0002-9643-1264</orcidid><orcidid>https://orcid.org/0000-0002-5482-6460</orcidid><orcidid>https://orcid.org/0000-0002-7290-1217</orcidid><orcidid>https://orcid.org/0000-0001-7931-0316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2022-04, Vol.39 (3), p.110696-110696, Article 110696 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_proquest_miscellaneous_2653268982 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | active zone Animals GTP-Binding Proteins - metabolism Homeostasis - physiology homeostatic plasticity KinSwing Mammals - metabolism Neuronal Plasticity - physiology phosphoproteomics phosphorylation presynaptic plasticity Presynaptic Terminals - metabolism RIM1 SRSF protein kinase 2 Synapses - metabolism synaptic transmission Synaptic Transmission - physiology Synaptic Vesicles - metabolism vesicle release |
title | A presynaptic phosphosignaling hub for lasting homeostatic plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20presynaptic%20phosphosignaling%20hub%20for%20lasting%20homeostatic%20plasticity&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=M%C3%BCller,%20Johannes%20Alexander&rft.date=2022-04-19&rft.volume=39&rft.issue=3&rft.spage=110696&rft.epage=110696&rft.pages=110696-110696&rft.artnum=110696&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2022.110696&rft_dat=%3Cproquest_cross%3E2653268982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653268982&rft_id=info:pmid/35443170&rfr_iscdi=true |