Loading…

A presynaptic phosphosignaling hub for lasting homeostatic plasticity

Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation statu...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2022-04, Vol.39 (3), p.110696-110696, Article 110696
Main Authors: Müller, Johannes Alexander, Betzin, Julia, Santos-Tejedor, Jorge, Mayer, Annika, Oprişoreanu, Ana-Maria, Engholm-Keller, Kasper, Paulußen, Isabelle, Gulakova, Polina, McGovern, Terrence Daniel, Gschossman, Lena Johanna, Schönhense, Eva, Wark, Jesse R., Lamprecht, Alf, Becker, Albert J., Waardenberg, Ashley J., Graham, Mark E., Dietrich, Dirk, Schoch, Susanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3
cites cdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3
container_end_page 110696
container_issue 3
container_start_page 110696
container_title Cell reports (Cambridge)
container_volume 39
creator Müller, Johannes Alexander
Betzin, Julia
Santos-Tejedor, Jorge
Mayer, Annika
Oprişoreanu, Ana-Maria
Engholm-Keller, Kasper
Paulußen, Isabelle
Gulakova, Polina
McGovern, Terrence Daniel
Gschossman, Lena Johanna
Schönhense, Eva
Wark, Jesse R.
Lamprecht, Alf
Becker, Albert J.
Waardenberg, Ashley J.
Graham, Mark E.
Dietrich, Dirk
Schoch, Susanne
description Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks. [Display omitted] •RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.
doi_str_mv 10.1016/j.celrep.2022.110696
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2653268982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124722004545</els_id><sourcerecordid>2653268982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQgIMobsz9ByJ99KU1l7Zp-yKMMX_AwBd9Dml63TLapiatsP_edp3ik4EjyfHdHfcRcgs0AAr84RAorCy2AaOMBQCUZ_yCzBkD8IFFyeWf94wsnTvQ4XAKkEXXZBbGURRCQudks_Jai-7YyLbTymv3xo2hd42sdLPz9n3ulcZ6lXTd6W9qNK6TJ_iUVLo73pCrUlYOl-d7QT6eNu_rF3_79vy6Xm19FdG08zlHDgBJCoxnjEul8pwXOGwkQ1qwLI2TCBkr0lypuOAYS0w54IhAGTIVLsj91Le15rNH14lau8FEJRs0vROMxyHjaZayAY0mVFnjnMVStFbX0h4FUDE6FAcxORSjQzE5HMruzhP6vMbit-jH2AA8TgAOe35ptMIpjY3CQltUnSiM_n_CN4tghD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653268982</pqid></control><display><type>article</type><title>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Müller, Johannes Alexander ; Betzin, Julia ; Santos-Tejedor, Jorge ; Mayer, Annika ; Oprişoreanu, Ana-Maria ; Engholm-Keller, Kasper ; Paulußen, Isabelle ; Gulakova, Polina ; McGovern, Terrence Daniel ; Gschossman, Lena Johanna ; Schönhense, Eva ; Wark, Jesse R. ; Lamprecht, Alf ; Becker, Albert J. ; Waardenberg, Ashley J. ; Graham, Mark E. ; Dietrich, Dirk ; Schoch, Susanne</creator><creatorcontrib>Müller, Johannes Alexander ; Betzin, Julia ; Santos-Tejedor, Jorge ; Mayer, Annika ; Oprişoreanu, Ana-Maria ; Engholm-Keller, Kasper ; Paulußen, Isabelle ; Gulakova, Polina ; McGovern, Terrence Daniel ; Gschossman, Lena Johanna ; Schönhense, Eva ; Wark, Jesse R. ; Lamprecht, Alf ; Becker, Albert J. ; Waardenberg, Ashley J. ; Graham, Mark E. ; Dietrich, Dirk ; Schoch, Susanne</creatorcontrib><description>Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks. [Display omitted] •RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2022.110696</identifier><identifier>PMID: 35443170</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active zone ; Animals ; GTP-Binding Proteins - metabolism ; Homeostasis - physiology ; homeostatic plasticity ; KinSwing ; Mammals - metabolism ; Neuronal Plasticity - physiology ; phosphoproteomics ; phosphorylation ; presynaptic plasticity ; Presynaptic Terminals - metabolism ; RIM1 ; SRSF protein kinase 2 ; Synapses - metabolism ; synaptic transmission ; Synaptic Transmission - physiology ; Synaptic Vesicles - metabolism ; vesicle release</subject><ispartof>Cell reports (Cambridge), 2022-04, Vol.39 (3), p.110696-110696, Article 110696</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</citedby><cites>FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</cites><orcidid>0000-0002-9382-7490 ; 0000-0003-2940-8168 ; 0000-0002-9643-1264 ; 0000-0002-5482-6460 ; 0000-0002-7290-1217 ; 0000-0001-7931-0316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35443170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Johannes Alexander</creatorcontrib><creatorcontrib>Betzin, Julia</creatorcontrib><creatorcontrib>Santos-Tejedor, Jorge</creatorcontrib><creatorcontrib>Mayer, Annika</creatorcontrib><creatorcontrib>Oprişoreanu, Ana-Maria</creatorcontrib><creatorcontrib>Engholm-Keller, Kasper</creatorcontrib><creatorcontrib>Paulußen, Isabelle</creatorcontrib><creatorcontrib>Gulakova, Polina</creatorcontrib><creatorcontrib>McGovern, Terrence Daniel</creatorcontrib><creatorcontrib>Gschossman, Lena Johanna</creatorcontrib><creatorcontrib>Schönhense, Eva</creatorcontrib><creatorcontrib>Wark, Jesse R.</creatorcontrib><creatorcontrib>Lamprecht, Alf</creatorcontrib><creatorcontrib>Becker, Albert J.</creatorcontrib><creatorcontrib>Waardenberg, Ashley J.</creatorcontrib><creatorcontrib>Graham, Mark E.</creatorcontrib><creatorcontrib>Dietrich, Dirk</creatorcontrib><creatorcontrib>Schoch, Susanne</creatorcontrib><title>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks. [Display omitted] •RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.</description><subject>active zone</subject><subject>Animals</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Homeostasis - physiology</subject><subject>homeostatic plasticity</subject><subject>KinSwing</subject><subject>Mammals - metabolism</subject><subject>Neuronal Plasticity - physiology</subject><subject>phosphoproteomics</subject><subject>phosphorylation</subject><subject>presynaptic plasticity</subject><subject>Presynaptic Terminals - metabolism</subject><subject>RIM1</subject><subject>SRSF protein kinase 2</subject><subject>Synapses - metabolism</subject><subject>synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles - metabolism</subject><subject>vesicle release</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQgIMobsz9ByJ99KU1l7Zp-yKMMX_AwBd9Dml63TLapiatsP_edp3ik4EjyfHdHfcRcgs0AAr84RAorCy2AaOMBQCUZ_yCzBkD8IFFyeWf94wsnTvQ4XAKkEXXZBbGURRCQudks_Jai-7YyLbTymv3xo2hd42sdLPz9n3ulcZ6lXTd6W9qNK6TJ_iUVLo73pCrUlYOl-d7QT6eNu_rF3_79vy6Xm19FdG08zlHDgBJCoxnjEul8pwXOGwkQ1qwLI2TCBkr0lypuOAYS0w54IhAGTIVLsj91Le15rNH14lau8FEJRs0vROMxyHjaZayAY0mVFnjnMVStFbX0h4FUDE6FAcxORSjQzE5HMruzhP6vMbit-jH2AA8TgAOe35ptMIpjY3CQltUnSiM_n_CN4tghD0</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Müller, Johannes Alexander</creator><creator>Betzin, Julia</creator><creator>Santos-Tejedor, Jorge</creator><creator>Mayer, Annika</creator><creator>Oprişoreanu, Ana-Maria</creator><creator>Engholm-Keller, Kasper</creator><creator>Paulußen, Isabelle</creator><creator>Gulakova, Polina</creator><creator>McGovern, Terrence Daniel</creator><creator>Gschossman, Lena Johanna</creator><creator>Schönhense, Eva</creator><creator>Wark, Jesse R.</creator><creator>Lamprecht, Alf</creator><creator>Becker, Albert J.</creator><creator>Waardenberg, Ashley J.</creator><creator>Graham, Mark E.</creator><creator>Dietrich, Dirk</creator><creator>Schoch, Susanne</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9382-7490</orcidid><orcidid>https://orcid.org/0000-0003-2940-8168</orcidid><orcidid>https://orcid.org/0000-0002-9643-1264</orcidid><orcidid>https://orcid.org/0000-0002-5482-6460</orcidid><orcidid>https://orcid.org/0000-0002-7290-1217</orcidid><orcidid>https://orcid.org/0000-0001-7931-0316</orcidid></search><sort><creationdate>20220419</creationdate><title>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</title><author>Müller, Johannes Alexander ; Betzin, Julia ; Santos-Tejedor, Jorge ; Mayer, Annika ; Oprişoreanu, Ana-Maria ; Engholm-Keller, Kasper ; Paulußen, Isabelle ; Gulakova, Polina ; McGovern, Terrence Daniel ; Gschossman, Lena Johanna ; Schönhense, Eva ; Wark, Jesse R. ; Lamprecht, Alf ; Becker, Albert J. ; Waardenberg, Ashley J. ; Graham, Mark E. ; Dietrich, Dirk ; Schoch, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active zone</topic><topic>Animals</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Homeostasis - physiology</topic><topic>homeostatic plasticity</topic><topic>KinSwing</topic><topic>Mammals - metabolism</topic><topic>Neuronal Plasticity - physiology</topic><topic>phosphoproteomics</topic><topic>phosphorylation</topic><topic>presynaptic plasticity</topic><topic>Presynaptic Terminals - metabolism</topic><topic>RIM1</topic><topic>SRSF protein kinase 2</topic><topic>Synapses - metabolism</topic><topic>synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles - metabolism</topic><topic>vesicle release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Johannes Alexander</creatorcontrib><creatorcontrib>Betzin, Julia</creatorcontrib><creatorcontrib>Santos-Tejedor, Jorge</creatorcontrib><creatorcontrib>Mayer, Annika</creatorcontrib><creatorcontrib>Oprişoreanu, Ana-Maria</creatorcontrib><creatorcontrib>Engholm-Keller, Kasper</creatorcontrib><creatorcontrib>Paulußen, Isabelle</creatorcontrib><creatorcontrib>Gulakova, Polina</creatorcontrib><creatorcontrib>McGovern, Terrence Daniel</creatorcontrib><creatorcontrib>Gschossman, Lena Johanna</creatorcontrib><creatorcontrib>Schönhense, Eva</creatorcontrib><creatorcontrib>Wark, Jesse R.</creatorcontrib><creatorcontrib>Lamprecht, Alf</creatorcontrib><creatorcontrib>Becker, Albert J.</creatorcontrib><creatorcontrib>Waardenberg, Ashley J.</creatorcontrib><creatorcontrib>Graham, Mark E.</creatorcontrib><creatorcontrib>Dietrich, Dirk</creatorcontrib><creatorcontrib>Schoch, Susanne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Johannes Alexander</au><au>Betzin, Julia</au><au>Santos-Tejedor, Jorge</au><au>Mayer, Annika</au><au>Oprişoreanu, Ana-Maria</au><au>Engholm-Keller, Kasper</au><au>Paulußen, Isabelle</au><au>Gulakova, Polina</au><au>McGovern, Terrence Daniel</au><au>Gschossman, Lena Johanna</au><au>Schönhense, Eva</au><au>Wark, Jesse R.</au><au>Lamprecht, Alf</au><au>Becker, Albert J.</au><au>Waardenberg, Ashley J.</au><au>Graham, Mark E.</au><au>Dietrich, Dirk</au><au>Schoch, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A presynaptic phosphosignaling hub for lasting homeostatic plasticity</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>39</volume><issue>3</issue><spage>110696</spage><epage>110696</epage><pages>110696-110696</pages><artnum>110696</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks. [Display omitted] •RIM is required for induction of presynaptic homeostatic plasticity (PHP)•The kinase SRPK2 regulates basal synaptic vesicle release and PHP•SRPK2 controls the number of RIM nanoclusters and of docked synaptic vesicles•Phosphorylation of RIM1 at serine 1045 increases release and occludes PHP The amount of neurotransmitters released in response to an action potential can be tuned by altering the number of release sites. Müller et al. show that the kinase SRPK2 is involved in regulating this process via the presynaptic active-zone protein RIM. Phosphorylation status changes of RIM dynamically modulate synaptic strength.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35443170</pmid><doi>10.1016/j.celrep.2022.110696</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9382-7490</orcidid><orcidid>https://orcid.org/0000-0003-2940-8168</orcidid><orcidid>https://orcid.org/0000-0002-9643-1264</orcidid><orcidid>https://orcid.org/0000-0002-5482-6460</orcidid><orcidid>https://orcid.org/0000-0002-7290-1217</orcidid><orcidid>https://orcid.org/0000-0001-7931-0316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2022-04, Vol.39 (3), p.110696-110696, Article 110696
issn 2211-1247
2211-1247
language eng
recordid cdi_proquest_miscellaneous_2653268982
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects active zone
Animals
GTP-Binding Proteins - metabolism
Homeostasis - physiology
homeostatic plasticity
KinSwing
Mammals - metabolism
Neuronal Plasticity - physiology
phosphoproteomics
phosphorylation
presynaptic plasticity
Presynaptic Terminals - metabolism
RIM1
SRSF protein kinase 2
Synapses - metabolism
synaptic transmission
Synaptic Transmission - physiology
Synaptic Vesicles - metabolism
vesicle release
title A presynaptic phosphosignaling hub for lasting homeostatic plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20presynaptic%20phosphosignaling%20hub%20for%20lasting%20homeostatic%20plasticity&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=M%C3%BCller,%20Johannes%20Alexander&rft.date=2022-04-19&rft.volume=39&rft.issue=3&rft.spage=110696&rft.epage=110696&rft.pages=110696-110696&rft.artnum=110696&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2022.110696&rft_dat=%3Cproquest_cross%3E2653268982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-66e611178126926accbb6de101a30d298574e22d8bcc5d6e5ae861e6de11f32c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653268982&rft_id=info:pmid/35443170&rfr_iscdi=true