Loading…

Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae

Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the developmen...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology journal 2022-08, Vol.17 (8), p.e2100603-n/a
Main Authors: Kuo, Eva YuHua, Yang, Ru‐Yin, Chin, Yuan Yu, Chien, Yi‐Lin, Chen, Yu Chu, Wei, Cheng‐Yu, Kao, Li‐Jung, Chang, Yi‐Hua, Li, Yu‐Jia, Chen, Te‐Yuan, Lee, Tse‐Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613
cites cdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613
container_end_page n/a
container_issue 8
container_start_page e2100603
container_title Biotechnology journal
container_volume 17
creator Kuo, Eva YuHua
Yang, Ru‐Yin
Chin, Yuan Yu
Chien, Yi‐Lin
Chen, Yu Chu
Wei, Cheng‐Yu
Kao, Li‐Jung
Chang, Yi‐Hua
Li, Yu‐Jia
Chen, Te‐Yuan
Lee, Tse‐Min
description Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed. Graphical and Lay Summary Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.
doi_str_mv 10.1002/biot.202100603
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2655101148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655101148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EolBYGZFHlhY_YjsZoeJRqahLmSM7vQlGeRTboar487i0lJHJ19J3zj33IHRFyZgSwm6N7cKYERY_kvAjdEZTSUaK0-R4P0sl0wE69_6dkERwkpyiAReJVCplZ-jrpa-D7RpbeKxXK9fp4g3i2C5xBS0EW2BoK9sCONtWuCtxA0Gbrra-wWXnsG2i6BOWOCZxUEbSbX7ka-0DrHUAh4MDHRpoA7YtjqvilrrScIFOSl17uNy_Q_T6-LCYPI9m86fp5G42KpgSfKQZS3hZZECXRvCMMikNUSopFQEDWaZpplmmhSGlTI2iujAl1ZILkykmJOVDdLPzjUk_evAhb6wvoK51C13vcyaFoITSJI3oeIfGjN7He_KVs412m5ySfFt4vi08PxQeBdd77940sDzgvw1HINsBa1vD5h-7_H46X_yZfwMtGI-y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655101148</pqid></control><display><type>article</type><title>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kuo, Eva YuHua ; Yang, Ru‐Yin ; Chin, Yuan Yu ; Chien, Yi‐Lin ; Chen, Yu Chu ; Wei, Cheng‐Yu ; Kao, Li‐Jung ; Chang, Yi‐Hua ; Li, Yu‐Jia ; Chen, Te‐Yuan ; Lee, Tse‐Min</creator><creatorcontrib>Kuo, Eva YuHua ; Yang, Ru‐Yin ; Chin, Yuan Yu ; Chien, Yi‐Lin ; Chen, Yu Chu ; Wei, Cheng‐Yu ; Kao, Li‐Jung ; Chang, Yi‐Hua ; Li, Yu‐Jia ; Chen, Te‐Yuan ; Lee, Tse‐Min</creatorcontrib><description>Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed. Graphical and Lay Summary Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.202100603</identifier><identifier>PMID: 35467782</identifier><language>eng</language><publisher>Germany</publisher><subject>biorefinery ; genetic engineering ; microalgae ; multiomics ; wastewater treatment</subject><ispartof>Biotechnology journal, 2022-08, Vol.17 (8), p.e2100603-n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</citedby><cites>FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</cites><orcidid>0000-0002-0892-4211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35467782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuo, Eva YuHua</creatorcontrib><creatorcontrib>Yang, Ru‐Yin</creatorcontrib><creatorcontrib>Chin, Yuan Yu</creatorcontrib><creatorcontrib>Chien, Yi‐Lin</creatorcontrib><creatorcontrib>Chen, Yu Chu</creatorcontrib><creatorcontrib>Wei, Cheng‐Yu</creatorcontrib><creatorcontrib>Kao, Li‐Jung</creatorcontrib><creatorcontrib>Chang, Yi‐Hua</creatorcontrib><creatorcontrib>Li, Yu‐Jia</creatorcontrib><creatorcontrib>Chen, Te‐Yuan</creatorcontrib><creatorcontrib>Lee, Tse‐Min</creatorcontrib><title>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</title><title>Biotechnology journal</title><addtitle>Biotechnol J</addtitle><description>Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed. Graphical and Lay Summary Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.</description><subject>biorefinery</subject><subject>genetic engineering</subject><subject>microalgae</subject><subject>multiomics</subject><subject>wastewater treatment</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EolBYGZFHlhY_YjsZoeJRqahLmSM7vQlGeRTboar487i0lJHJ19J3zj33IHRFyZgSwm6N7cKYERY_kvAjdEZTSUaK0-R4P0sl0wE69_6dkERwkpyiAReJVCplZ-jrpa-D7RpbeKxXK9fp4g3i2C5xBS0EW2BoK9sCONtWuCtxA0Gbrra-wWXnsG2i6BOWOCZxUEbSbX7ka-0DrHUAh4MDHRpoA7YtjqvilrrScIFOSl17uNy_Q_T6-LCYPI9m86fp5G42KpgSfKQZS3hZZECXRvCMMikNUSopFQEDWaZpplmmhSGlTI2iujAl1ZILkykmJOVDdLPzjUk_evAhb6wvoK51C13vcyaFoITSJI3oeIfGjN7He_KVs412m5ySfFt4vi08PxQeBdd77940sDzgvw1HINsBa1vD5h-7_H46X_yZfwMtGI-y</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Kuo, Eva YuHua</creator><creator>Yang, Ru‐Yin</creator><creator>Chin, Yuan Yu</creator><creator>Chien, Yi‐Lin</creator><creator>Chen, Yu Chu</creator><creator>Wei, Cheng‐Yu</creator><creator>Kao, Li‐Jung</creator><creator>Chang, Yi‐Hua</creator><creator>Li, Yu‐Jia</creator><creator>Chen, Te‐Yuan</creator><creator>Lee, Tse‐Min</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0892-4211</orcidid></search><sort><creationdate>202208</creationdate><title>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</title><author>Kuo, Eva YuHua ; Yang, Ru‐Yin ; Chin, Yuan Yu ; Chien, Yi‐Lin ; Chen, Yu Chu ; Wei, Cheng‐Yu ; Kao, Li‐Jung ; Chang, Yi‐Hua ; Li, Yu‐Jia ; Chen, Te‐Yuan ; Lee, Tse‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biorefinery</topic><topic>genetic engineering</topic><topic>microalgae</topic><topic>multiomics</topic><topic>wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Eva YuHua</creatorcontrib><creatorcontrib>Yang, Ru‐Yin</creatorcontrib><creatorcontrib>Chin, Yuan Yu</creatorcontrib><creatorcontrib>Chien, Yi‐Lin</creatorcontrib><creatorcontrib>Chen, Yu Chu</creatorcontrib><creatorcontrib>Wei, Cheng‐Yu</creatorcontrib><creatorcontrib>Kao, Li‐Jung</creatorcontrib><creatorcontrib>Chang, Yi‐Hua</creatorcontrib><creatorcontrib>Li, Yu‐Jia</creatorcontrib><creatorcontrib>Chen, Te‐Yuan</creatorcontrib><creatorcontrib>Lee, Tse‐Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Eva YuHua</au><au>Yang, Ru‐Yin</au><au>Chin, Yuan Yu</au><au>Chien, Yi‐Lin</au><au>Chen, Yu Chu</au><au>Wei, Cheng‐Yu</au><au>Kao, Li‐Jung</au><au>Chang, Yi‐Hua</au><au>Li, Yu‐Jia</au><au>Chen, Te‐Yuan</au><au>Lee, Tse‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnol J</addtitle><date>2022-08</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e2100603</spage><epage>n/a</epage><pages>e2100603-n/a</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed. Graphical and Lay Summary Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.</abstract><cop>Germany</cop><pmid>35467782</pmid><doi>10.1002/biot.202100603</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0892-4211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1860-6768
ispartof Biotechnology journal, 2022-08, Vol.17 (8), p.e2100603-n/a
issn 1860-6768
1860-7314
language eng
recordid cdi_proquest_miscellaneous_2655101148
source Wiley-Blackwell Read & Publish Collection
subjects biorefinery
genetic engineering
microalgae
multiomics
wastewater treatment
title Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiomics%20approaches%20and%20genetic%20engineering%20of%20metabolism%20for%20improved%20biorefinery%20and%20wastewater%20treatment%20in%20microalgae&rft.jtitle=Biotechnology%20journal&rft.au=Kuo,%20Eva%20YuHua&rft.date=2022-08&rft.volume=17&rft.issue=8&rft.spage=e2100603&rft.epage=n/a&rft.pages=e2100603-n/a&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.202100603&rft_dat=%3Cproquest_cross%3E2655101148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655101148&rft_id=info:pmid/35467782&rfr_iscdi=true