Loading…
Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the developmen...
Saved in:
Published in: | Biotechnology journal 2022-08, Vol.17 (8), p.e2100603-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613 |
---|---|
cites | cdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | e2100603 |
container_title | Biotechnology journal |
container_volume | 17 |
creator | Kuo, Eva YuHua Yang, Ru‐Yin Chin, Yuan Yu Chien, Yi‐Lin Chen, Yu Chu Wei, Cheng‐Yu Kao, Li‐Jung Chang, Yi‐Hua Li, Yu‐Jia Chen, Te‐Yuan Lee, Tse‐Min |
description | Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed.
Graphical and Lay Summary
Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed. |
doi_str_mv | 10.1002/biot.202100603 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2655101148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655101148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EolBYGZFHlhY_YjsZoeJRqahLmSM7vQlGeRTboar487i0lJHJ19J3zj33IHRFyZgSwm6N7cKYERY_kvAjdEZTSUaK0-R4P0sl0wE69_6dkERwkpyiAReJVCplZ-jrpa-D7RpbeKxXK9fp4g3i2C5xBS0EW2BoK9sCONtWuCtxA0Gbrra-wWXnsG2i6BOWOCZxUEbSbX7ka-0DrHUAh4MDHRpoA7YtjqvilrrScIFOSl17uNy_Q_T6-LCYPI9m86fp5G42KpgSfKQZS3hZZECXRvCMMikNUSopFQEDWaZpplmmhSGlTI2iujAl1ZILkykmJOVDdLPzjUk_evAhb6wvoK51C13vcyaFoITSJI3oeIfGjN7He_KVs412m5ySfFt4vi08PxQeBdd77940sDzgvw1HINsBa1vD5h-7_H46X_yZfwMtGI-y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655101148</pqid></control><display><type>article</type><title>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kuo, Eva YuHua ; Yang, Ru‐Yin ; Chin, Yuan Yu ; Chien, Yi‐Lin ; Chen, Yu Chu ; Wei, Cheng‐Yu ; Kao, Li‐Jung ; Chang, Yi‐Hua ; Li, Yu‐Jia ; Chen, Te‐Yuan ; Lee, Tse‐Min</creator><creatorcontrib>Kuo, Eva YuHua ; Yang, Ru‐Yin ; Chin, Yuan Yu ; Chien, Yi‐Lin ; Chen, Yu Chu ; Wei, Cheng‐Yu ; Kao, Li‐Jung ; Chang, Yi‐Hua ; Li, Yu‐Jia ; Chen, Te‐Yuan ; Lee, Tse‐Min</creatorcontrib><description>Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed.
Graphical and Lay Summary
Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.202100603</identifier><identifier>PMID: 35467782</identifier><language>eng</language><publisher>Germany</publisher><subject>biorefinery ; genetic engineering ; microalgae ; multiomics ; wastewater treatment</subject><ispartof>Biotechnology journal, 2022-08, Vol.17 (8), p.e2100603-n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</citedby><cites>FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</cites><orcidid>0000-0002-0892-4211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35467782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuo, Eva YuHua</creatorcontrib><creatorcontrib>Yang, Ru‐Yin</creatorcontrib><creatorcontrib>Chin, Yuan Yu</creatorcontrib><creatorcontrib>Chien, Yi‐Lin</creatorcontrib><creatorcontrib>Chen, Yu Chu</creatorcontrib><creatorcontrib>Wei, Cheng‐Yu</creatorcontrib><creatorcontrib>Kao, Li‐Jung</creatorcontrib><creatorcontrib>Chang, Yi‐Hua</creatorcontrib><creatorcontrib>Li, Yu‐Jia</creatorcontrib><creatorcontrib>Chen, Te‐Yuan</creatorcontrib><creatorcontrib>Lee, Tse‐Min</creatorcontrib><title>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</title><title>Biotechnology journal</title><addtitle>Biotechnol J</addtitle><description>Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed.
Graphical and Lay Summary
Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.</description><subject>biorefinery</subject><subject>genetic engineering</subject><subject>microalgae</subject><subject>multiomics</subject><subject>wastewater treatment</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EolBYGZFHlhY_YjsZoeJRqahLmSM7vQlGeRTboar487i0lJHJ19J3zj33IHRFyZgSwm6N7cKYERY_kvAjdEZTSUaK0-R4P0sl0wE69_6dkERwkpyiAReJVCplZ-jrpa-D7RpbeKxXK9fp4g3i2C5xBS0EW2BoK9sCONtWuCtxA0Gbrra-wWXnsG2i6BOWOCZxUEbSbX7ka-0DrHUAh4MDHRpoA7YtjqvilrrScIFOSl17uNy_Q_T6-LCYPI9m86fp5G42KpgSfKQZS3hZZECXRvCMMikNUSopFQEDWaZpplmmhSGlTI2iujAl1ZILkykmJOVDdLPzjUk_evAhb6wvoK51C13vcyaFoITSJI3oeIfGjN7He_KVs412m5ySfFt4vi08PxQeBdd77940sDzgvw1HINsBa1vD5h-7_H46X_yZfwMtGI-y</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Kuo, Eva YuHua</creator><creator>Yang, Ru‐Yin</creator><creator>Chin, Yuan Yu</creator><creator>Chien, Yi‐Lin</creator><creator>Chen, Yu Chu</creator><creator>Wei, Cheng‐Yu</creator><creator>Kao, Li‐Jung</creator><creator>Chang, Yi‐Hua</creator><creator>Li, Yu‐Jia</creator><creator>Chen, Te‐Yuan</creator><creator>Lee, Tse‐Min</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0892-4211</orcidid></search><sort><creationdate>202208</creationdate><title>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</title><author>Kuo, Eva YuHua ; Yang, Ru‐Yin ; Chin, Yuan Yu ; Chien, Yi‐Lin ; Chen, Yu Chu ; Wei, Cheng‐Yu ; Kao, Li‐Jung ; Chang, Yi‐Hua ; Li, Yu‐Jia ; Chen, Te‐Yuan ; Lee, Tse‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biorefinery</topic><topic>genetic engineering</topic><topic>microalgae</topic><topic>multiomics</topic><topic>wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Eva YuHua</creatorcontrib><creatorcontrib>Yang, Ru‐Yin</creatorcontrib><creatorcontrib>Chin, Yuan Yu</creatorcontrib><creatorcontrib>Chien, Yi‐Lin</creatorcontrib><creatorcontrib>Chen, Yu Chu</creatorcontrib><creatorcontrib>Wei, Cheng‐Yu</creatorcontrib><creatorcontrib>Kao, Li‐Jung</creatorcontrib><creatorcontrib>Chang, Yi‐Hua</creatorcontrib><creatorcontrib>Li, Yu‐Jia</creatorcontrib><creatorcontrib>Chen, Te‐Yuan</creatorcontrib><creatorcontrib>Lee, Tse‐Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Eva YuHua</au><au>Yang, Ru‐Yin</au><au>Chin, Yuan Yu</au><au>Chien, Yi‐Lin</au><au>Chen, Yu Chu</au><au>Wei, Cheng‐Yu</au><au>Kao, Li‐Jung</au><au>Chang, Yi‐Hua</au><au>Li, Yu‐Jia</au><au>Chen, Te‐Yuan</au><au>Lee, Tse‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnol J</addtitle><date>2022-08</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e2100603</spage><epage>n/a</epage><pages>e2100603-n/a</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value‐added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed.
Graphical and Lay Summary
Multi‐omics analysis with the aid of machine learning for metabolic modeling of pathway network to discover the key steps for targeted metabolites in microalgae has accelerated in the recent past. The development of genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome‐editing tools to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production is urgently needed.</abstract><cop>Germany</cop><pmid>35467782</pmid><doi>10.1002/biot.202100603</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0892-4211</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-6768 |
ispartof | Biotechnology journal, 2022-08, Vol.17 (8), p.e2100603-n/a |
issn | 1860-6768 1860-7314 |
language | eng |
recordid | cdi_proquest_miscellaneous_2655101148 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | biorefinery genetic engineering microalgae multiomics wastewater treatment |
title | Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiomics%20approaches%20and%20genetic%20engineering%20of%20metabolism%20for%20improved%20biorefinery%20and%20wastewater%20treatment%20in%20microalgae&rft.jtitle=Biotechnology%20journal&rft.au=Kuo,%20Eva%20YuHua&rft.date=2022-08&rft.volume=17&rft.issue=8&rft.spage=e2100603&rft.epage=n/a&rft.pages=e2100603-n/a&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.202100603&rft_dat=%3Cproquest_cross%3E2655101148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2753-a2243fc9e1db5391266b0774f70ebe99a19a29a5b0f68b71acbf1a635b9725613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655101148&rft_id=info:pmid/35467782&rfr_iscdi=true |