Loading…
Insight into the dynamic microbial community and core bacteria in composting from different sources by advanced bioinformatics methods
Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM...
Saved in:
Published in: | Environmental science and pollution research international 2023-01, Vol.30 (4), p.8956-8966 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM), food waste (FW), and vegetable waste (VW). The role and interactions of core bacteria and their contribution to maturity in diverse composts were analyzed by advanced bioinformatics methods combined sequencing with co-occurrence network and structural equation modeling (SEM). Results indicated that there were obviously different bacterial composition and diversity in composting from diverse sources. FW had a low pH and different physiochemical characteristics compared to other composts but they all achieved similar maturity products. Redundancy analysis suggested total organic carbon, phosphorus, and temperature governed the composition of microbial species but key factors were different in diverse composts. Network analysis showed completely different interactions of core bacterial community from diverse composts but
Thermobifida
was the ubiquitous core bacteria in composting bacterial network.
Sphaerobacter
and
Lactobacillus
as core genus were presented in the starting mesophilic and thermophilic phases of composting from manure (CM, DM, SM) and municipal solid waste (FW, VW), respectively. SEM indicated core bacteria had the positive, direct, and the biggest (> 80%) effects on composting maturity. Therefore, this study presents theoretical basis to identify and enhance the core bacteria for improving full-scale composting efficiency facing more and more organic wastes. |
---|---|
ISSN: | 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-022-20388-7 |