Loading…
Frontal curing of epoxy resins: Comparison of mechanical and thermal properties to batch-cured materials
The epoxy resin diglycidyl ether of bisphenol F (DGEBF) was cured by the aliphatic amine curing agent Epicure 3371 in a stoichiometric ratio both frontally and in a batch‐cure schedule. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC) and dynamic mecha...
Saved in:
Published in: | Journal of applied polymer science 1997-11, Vol.66 (6), p.1209-1216 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The epoxy resin diglycidyl ether of bisphenol F (DGEBF) was cured by the aliphatic amine curing agent Epicure 3371 in a stoichiometric ratio both frontally and in a batch‐cure schedule. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). DMA also was used for studying the storage modulus (E′) and tan delta (tan δ) of the cured samples. Tensile properties of epoxy samples were tested according to ASTM D638M‐93. The properties of the frontally cured epoxy resin were found to be very close to that of batch‐cured epoxy resin. Velocity of cure‐front propagation was measured for both neat and filled epoxy. Rubber particles (ground tires) were used as a filler. The maximum percentage of filler in the epoxy resin allowing propagation was 30%. Because of convection, only descending fronts would propagate. Advantages and disadvantages of frontal curing of epoxy resins are discussed. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1209–1216, 1997 |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/(SICI)1097-4628(19971107)66:6<1209::AID-APP20>3.0.CO;2-V |