Loading…
Cubic algebraic curves based on geometric constraints
Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-para...
Saved in:
Published in: | Computer aided geometric design 2001-05, Vol.18 (4), p.299-307 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493 |
container_end_page | 307 |
container_issue | 4 |
container_start_page | 299 |
container_title | Computer aided geometric design |
container_volume | 18 |
creator | Sanyuan, Zhang Hujun, Bao Baogang, Wei |
description | Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper. |
doi_str_mv | 10.1016/S0167-8396(01)00032-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26580003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839601000322</els_id><sourcerecordid>26580003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVgQRA-r-dgmm5NI8QsKHtRzmGRnS2S7W5Pdgv_ebFt69TIzMM_My_sScsnoHaNM3n-kovJSaHlD2S2lVPCcH5EJK5XOuRD8mEwOyCk5i_E7QZxpOSGz-WC9y6BZog2QJjeEDcbMQsQq69psid0K-zBuujb2iWn7eE5OamgiXuz7lHw9P33OX_PF-8vb_HGROyFln1sooGSyEqiYpdTVIBktmFaVpagKqxU4dFQXKECUWkjgDnWtWMGt4oUWU3K9-7sO3c-AsTcrHx02DbTYDdFwOStHvwmc7UAXuhgD1mYd_ArCr2HUjCGZbUhmTMBQZrYhGZ7urvYCEB00dYDW-Xg41koXgiXqYUdh8rrxGEx0HluHlQ_oelN1_h-dP3ukeiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26580003</pqid></control><display><type>article</type><title>Cubic algebraic curves based on geometric constraints</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Sanyuan, Zhang ; Hujun, Bao ; Baogang, Wei</creator><creatorcontrib>Sanyuan, Zhang ; Hujun, Bao ; Baogang, Wei</creatorcontrib><description>Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/S0167-8396(01)00032-2</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer aided design ; Computer science; control theory; systems ; Cubic algebraic curve ; Cubic parametric curve ; Curvature continuity ; Exact sciences and technology ; Geometric constraint ; Interpolation ; Software</subject><ispartof>Computer aided geometric design, 2001-05, Vol.18 (4), p.299-307</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</citedby><cites>FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839601000322$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3551,27901,27902,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=979431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanyuan, Zhang</creatorcontrib><creatorcontrib>Hujun, Bao</creatorcontrib><creatorcontrib>Baogang, Wei</creatorcontrib><title>Cubic algebraic curves based on geometric constraints</title><title>Computer aided geometric design</title><description>Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.</description><subject>Applied sciences</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Cubic algebraic curve</subject><subject>Cubic parametric curve</subject><subject>Curvature continuity</subject><subject>Exact sciences and technology</subject><subject>Geometric constraint</subject><subject>Interpolation</subject><subject>Software</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVgQRA-r-dgmm5NI8QsKHtRzmGRnS2S7W5Pdgv_ebFt69TIzMM_My_sScsnoHaNM3n-kovJSaHlD2S2lVPCcH5EJK5XOuRD8mEwOyCk5i_E7QZxpOSGz-WC9y6BZog2QJjeEDcbMQsQq69psid0K-zBuujb2iWn7eE5OamgiXuz7lHw9P33OX_PF-8vb_HGROyFln1sooGSyEqiYpdTVIBktmFaVpagKqxU4dFQXKECUWkjgDnWtWMGt4oUWU3K9-7sO3c-AsTcrHx02DbTYDdFwOStHvwmc7UAXuhgD1mYd_ArCr2HUjCGZbUhmTMBQZrYhGZ7urvYCEB00dYDW-Xg41koXgiXqYUdh8rrxGEx0HluHlQ_oelN1_h-dP3ukeiE</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Sanyuan, Zhang</creator><creator>Hujun, Bao</creator><creator>Baogang, Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010501</creationdate><title>Cubic algebraic curves based on geometric constraints</title><author>Sanyuan, Zhang ; Hujun, Bao ; Baogang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Cubic algebraic curve</topic><topic>Cubic parametric curve</topic><topic>Curvature continuity</topic><topic>Exact sciences and technology</topic><topic>Geometric constraint</topic><topic>Interpolation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanyuan, Zhang</creatorcontrib><creatorcontrib>Hujun, Bao</creatorcontrib><creatorcontrib>Baogang, Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyuan, Zhang</au><au>Hujun, Bao</au><au>Baogang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic algebraic curves based on geometric constraints</atitle><jtitle>Computer aided geometric design</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>18</volume><issue>4</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-8396(01)00032-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8396 |
ispartof | Computer aided geometric design, 2001-05, Vol.18 (4), p.299-307 |
issn | 0167-8396 1879-2332 |
language | eng |
recordid | cdi_proquest_miscellaneous_26580003 |
source | Elsevier; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Applied sciences Computer aided design Computer science control theory systems Cubic algebraic curve Cubic parametric curve Curvature continuity Exact sciences and technology Geometric constraint Interpolation Software |
title | Cubic algebraic curves based on geometric constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic%20algebraic%20curves%20based%20on%20geometric%20constraints&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Sanyuan,%20Zhang&rft.date=2001-05-01&rft.volume=18&rft.issue=4&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/S0167-8396(01)00032-2&rft_dat=%3Cproquest_cross%3E26580003%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26580003&rft_id=info:pmid/&rfr_iscdi=true |