Loading…

Cubic algebraic curves based on geometric constraints

Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-para...

Full description

Saved in:
Bibliographic Details
Published in:Computer aided geometric design 2001-05, Vol.18 (4), p.299-307
Main Authors: Sanyuan, Zhang, Hujun, Bao, Baogang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493
cites cdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493
container_end_page 307
container_issue 4
container_start_page 299
container_title Computer aided geometric design
container_volume 18
creator Sanyuan, Zhang
Hujun, Bao
Baogang, Wei
description Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.
doi_str_mv 10.1016/S0167-8396(01)00032-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26580003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839601000322</els_id><sourcerecordid>26580003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVgQRA-r-dgmm5NI8QsKHtRzmGRnS2S7W5Pdgv_ebFt69TIzMM_My_sScsnoHaNM3n-kovJSaHlD2S2lVPCcH5EJK5XOuRD8mEwOyCk5i_E7QZxpOSGz-WC9y6BZog2QJjeEDcbMQsQq69psid0K-zBuujb2iWn7eE5OamgiXuz7lHw9P33OX_PF-8vb_HGROyFln1sooGSyEqiYpdTVIBktmFaVpagKqxU4dFQXKECUWkjgDnWtWMGt4oUWU3K9-7sO3c-AsTcrHx02DbTYDdFwOStHvwmc7UAXuhgD1mYd_ArCr2HUjCGZbUhmTMBQZrYhGZ7urvYCEB00dYDW-Xg41koXgiXqYUdh8rrxGEx0HluHlQ_oelN1_h-dP3ukeiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26580003</pqid></control><display><type>article</type><title>Cubic algebraic curves based on geometric constraints</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Sanyuan, Zhang ; Hujun, Bao ; Baogang, Wei</creator><creatorcontrib>Sanyuan, Zhang ; Hujun, Bao ; Baogang, Wei</creatorcontrib><description>Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/S0167-8396(01)00032-2</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer aided design ; Computer science; control theory; systems ; Cubic algebraic curve ; Cubic parametric curve ; Curvature continuity ; Exact sciences and technology ; Geometric constraint ; Interpolation ; Software</subject><ispartof>Computer aided geometric design, 2001-05, Vol.18 (4), p.299-307</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</citedby><cites>FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839601000322$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3551,27901,27902,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=979431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanyuan, Zhang</creatorcontrib><creatorcontrib>Hujun, Bao</creatorcontrib><creatorcontrib>Baogang, Wei</creatorcontrib><title>Cubic algebraic curves based on geometric constraints</title><title>Computer aided geometric design</title><description>Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.</description><subject>Applied sciences</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Cubic algebraic curve</subject><subject>Cubic parametric curve</subject><subject>Curvature continuity</subject><subject>Exact sciences and technology</subject><subject>Geometric constraint</subject><subject>Interpolation</subject><subject>Software</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVgQRA-r-dgmm5NI8QsKHtRzmGRnS2S7W5Pdgv_ebFt69TIzMM_My_sScsnoHaNM3n-kovJSaHlD2S2lVPCcH5EJK5XOuRD8mEwOyCk5i_E7QZxpOSGz-WC9y6BZog2QJjeEDcbMQsQq69psid0K-zBuujb2iWn7eE5OamgiXuz7lHw9P33OX_PF-8vb_HGROyFln1sooGSyEqiYpdTVIBktmFaVpagKqxU4dFQXKECUWkjgDnWtWMGt4oUWU3K9-7sO3c-AsTcrHx02DbTYDdFwOStHvwmc7UAXuhgD1mYd_ArCr2HUjCGZbUhmTMBQZrYhGZ7urvYCEB00dYDW-Xg41koXgiXqYUdh8rrxGEx0HluHlQ_oelN1_h-dP3ukeiE</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Sanyuan, Zhang</creator><creator>Hujun, Bao</creator><creator>Baogang, Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010501</creationdate><title>Cubic algebraic curves based on geometric constraints</title><author>Sanyuan, Zhang ; Hujun, Bao ; Baogang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Cubic algebraic curve</topic><topic>Cubic parametric curve</topic><topic>Curvature continuity</topic><topic>Exact sciences and technology</topic><topic>Geometric constraint</topic><topic>Interpolation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanyuan, Zhang</creatorcontrib><creatorcontrib>Hujun, Bao</creatorcontrib><creatorcontrib>Baogang, Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyuan, Zhang</au><au>Hujun, Bao</au><au>Baogang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic algebraic curves based on geometric constraints</atitle><jtitle>Computer aided geometric design</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>18</volume><issue>4</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>Methods for curve modeling with cubic algebraic curves based on geometric constraints are introduced in this paper. A 1-parameter family of cubic curves with four given points as well as two tangent lines at the endpoints is constructed in the first part of the paper. A 1-parameter family and 2-parameter family of cubic curve constructions are presented for interpolating two given endpoints and two given tangent lines as well as two given curvatures at the endpoints in the last part of the paper.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-8396(01)00032-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8396
ispartof Computer aided geometric design, 2001-05, Vol.18 (4), p.299-307
issn 0167-8396
1879-2332
language eng
recordid cdi_proquest_miscellaneous_26580003
source Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects Applied sciences
Computer aided design
Computer science
control theory
systems
Cubic algebraic curve
Cubic parametric curve
Curvature continuity
Exact sciences and technology
Geometric constraint
Interpolation
Software
title Cubic algebraic curves based on geometric constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic%20algebraic%20curves%20based%20on%20geometric%20constraints&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Sanyuan,%20Zhang&rft.date=2001-05-01&rft.volume=18&rft.issue=4&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/S0167-8396(01)00032-2&rft_dat=%3Cproquest_cross%3E26580003%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-ba4a816d3e71b00cfa6104197db0e74b97acec094e3a38936a2ce9f7142b72493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26580003&rft_id=info:pmid/&rfr_iscdi=true